cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A019555 Smallest number whose cube is divisible by n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

R. Muller

Keywords

Comments

This can be thought as an "upper 3rd root" of a positive integer. Upper k-th roots were studied by Broughan (2002, 2003, 2006). The sequence of "lower 3rd root" of positive integers is given by A053150. - Petros Hadjicostas, Sep 15 2019

Crossrefs

Cf. A000188 (inner square root), A019554 (outer square root), A053150 (inner 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Maple
    f:= n -> mul(t[1]^ceil(t[2]/3), t = ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Sep 22 2015
  • Mathematica
    cubes=Range[85]^3; Table[Position[Divisible[cubes,i],True,1,1][[1,1]],{i,85}] (* Harvey P. Dale, Jan 12 2011 *)
    f[p_, e_] := p^Ceiling[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, Jan 06 2024 *)
  • PARI
    a(n)=my(r=1);while(r^3%n!=0,r++);r \\ Anders Hellström, Sep 22 2015
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X + p*X^2)/(1 - p*X^3))[n], ", ")) \\ Vaclav Kotesovec, Aug 30 2021
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^ceil(f[i,2]/3));} \\ Amiram Eldar, Jan 06 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A019555(n): return prod(p**((q%3 != 0)+(q//3)) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
  • Sage
    [prod([t[0]^(ceil(t[1]/3)) for t in factor(n)]) for n in range(1,79)] # Danny Rorabaugh, Sep 22 2015
    

Formula

Replace any cubic factors in n by their cube roots.
a(n) = n/A000189(n).
Multiplicative with a(p^e) = p^ceiling(e/3). - R. J. Mathar, May 29 2011
From Vaclav Kotesovec, Aug 30 2021: (Start)
Dirichlet g.f.: zeta(3*s-1) * Product_{p prime} (1 + p^(1 - s) + p^(1 - 2*s)).
Dirichlet g.f.: zeta(3*s-1) * zeta(s-1) * Product_{p prime} (1 - p^(2 - 3*s) + p^(1 - 2*s) - p^(2 - 2*s)).
Sum_{k=1..n} a(k) ~ c * zeta(5) * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.684286924186862318141968725791218083472312736723163777284618226290055... (End)

Extensions

Corrected and extended by David W. Wilson

A015051 Let m = A013929(n); then a(n) = smallest k such that m divides k^4.

Original entry on oeis.org

2, 2, 3, 6, 2, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22, 15, 6, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 38, 10, 3, 42, 22, 30, 46, 12, 14, 33, 10, 26, 6, 14, 58, 39, 30, 11, 62, 5, 42, 4, 66, 15, 34, 70, 6, 21, 74, 30, 38, 51, 78, 20, 6, 82, 42, 13, 57, 86
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/4]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 10 2021 *)
  • PARI
    lista(kmax) = {my(f); for(k = 2, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, f[i,1]^ceil(f[i,2]/4)), ", ")));} \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = A053166(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * (zeta(2) * zeta(7) * Product_{p prime} (1-1/p^2+1/p^3-1/p^4+1/p^5-1/p^6) - 1)/(zeta(2)-1)^2 = 0.635465442379... . - Amiram Eldar, Jan 06 2024

Extensions

Description corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Jun 23 2002
Offset corrected by Amiram Eldar, Feb 10 2021

A015049 Let m = A013929(n); then a(n) = smallest k such that m divides k^2.

Original entry on oeis.org

2, 4, 3, 6, 4, 6, 10, 12, 5, 9, 14, 8, 6, 20, 22, 15, 12, 7, 10, 26, 18, 28, 30, 21, 8, 34, 12, 15, 38, 20, 9, 42, 44, 30, 46, 24, 14, 33, 10, 52, 18, 28, 58, 39, 60, 11, 62, 25, 42, 16, 66, 45, 68, 70, 12, 21, 74, 30, 76, 51, 78, 40, 18, 82, 84, 13, 57, 86
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 10 2021 *)
  • PARI
    lista(kmax) = {my(f); for(k = 2, kmax, f = factor(k); if(!issquarefree(f), print1(k/core(f, 1)[2], ", ")));} \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = A019554(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)*(zeta(3)-1)/(zeta(2)-1)^2 = 0.799082... . - Amiram Eldar, Jan 06 2024

Extensions

Description corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Jun 23 2002
Offset corrected by Amiram Eldar, Feb 10 2021

A015047 Numbers k such that S(k) = S(k-1) + S(k-2) where S is the Kempner function A002034.

Original entry on oeis.org

3, 11, 121, 4902, 26245, 32112, 64010, 368140, 415664, 2091206, 2519648, 4573053, 7783364, 12610170, 16739482, 20526651, 30744490, 31137773, 44893057, 79269727, 99681870, 112803824, 136193976, 213879072, 321022289, 445810543, 559199345, 617868162, 624292242
Offset: 1

Views

Author

R. Muller (Research37(AT)aol.com)

Keywords

References

  • Charles Ashbacher and Mike Mudge, Personal Computer World, London, #10, 1995, p. 302.

Crossrefs

Extensions

Missing terms inserted by Amiram Eldar, Jul 07 2021
Showing 1-4 of 4 results.