A015107 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-10.
1, 1, -9, -919, 917271, 9174563561, -917438025443049, -917439860513400673559, 9174396770273536422744011031, 917439695376166450708460281823359721, -917439693541287252616828116888122637934368489
Offset: 0
Keywords
Examples
G.f. = 1 + x - 9*x^2 - 919*x^3 + 917271*x^4 + 9174563561*x^5 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..45
- Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Thesis, University of Vienna, 2013.
Crossrefs
Cf. A227543.
Cf. A015108 (q=-11), this sequence (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=10 of A290789.
Programs
-
Mathematica
m = 11; ContinuedFractionK[If[i == 1, 1, -(-10)^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
Ruby
def A(q, n) ary = [1] (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}} ary end def A015107(n) A(-10, n) end # Seiichi Manyama, Dec 25 2016
Formula
a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-10 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(-10*x)) = 1/(1-x/(1+10*x/(1-10^2*x/(1+10^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 28 2016
Extensions
Offset changed to 0 by Seiichi Manyama, Dec 25 2016