A015117 Triangle of q-binomial coefficients for q=-7.
1, 1, 1, 1, -6, 1, 1, 43, 43, 1, 1, -300, 2150, -300, 1, 1, 2101, 105050, 105050, 2101, 1, 1, -14706, 5149551, -35927100, 5149551, -14706, 1, 1, 102943, 252313293, 12328144851, 12328144851, 252313293, 102943, 1, 1, -720600, 12363454300
Offset: 0
Links
Crossrefs
Cf. analog triangles for negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15);
analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 04 2012
Programs
-
Mathematica
Flatten[Table[QBinomial[n,m,-7],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Aug 08 2012 *)
-
PARI
T015117(n, k, q=-7)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
Comments