A015382 Gaussian binomial coefficient [ n,9 ] for q=-10.
1, -909090909, 918273645463728191, -917356289173636281073462809, 917448033977125729275307703398447191, -917438859588520669588272049420660231320652809, 917439777028298615325746963688293507886210115870347191
Offset: 9
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 9..120
Crossrefs
Programs
-
Magma
r:=9; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
-
Mathematica
Table[QBinomial[n, 9, -10],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
Formula
a(n) = Product_{i=1..9} ((-10)^(n-i+1)-1)/((-10)^i-1). - Vincenzo Librandi, Nov 04 2012