cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015742 Number of 7's in all the partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 10, 12, 14, 18, 22, 25, 30, 36, 42, 50, 58, 67, 79, 92, 106, 123, 142, 164, 189, 217, 248, 284, 325, 370, 421, 479, 543, 616, 698, 788, 890, 1005, 1131, 1273, 1432, 1606, 1802
Offset: 1

Views

Author

Keywords

Examples

			a(9)=1 because in the 8 (=A000009(9)) partitions of 9 into distinct parts, namely [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2] we have altogether one part equal to 7.
		

Programs

  • Maple
    g:=x^7*product(1+x^j,j=1..60)/(1+x^7): gser:=series(g,x=0,57): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 17 2006
  • Mathematica
    n7[n_]:=Count[Flatten[Select[IntegerPartitions[n],Max[Transpose[ Tally[#]][[2]]]==1&]],7]; Table[n7[n],{n,60}] (* Harvey P. Dale, Aug 30 2013 *)
    nmax = 100; Rest[CoefficientList[Series[x^7/(1+x^7) * Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 30 2015 *)

Formula

G.f.: x^7*(Product_{j>=1} (1+x^j))/(1+x^7). - Emeric Deutsch, Apr 17 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015

Extensions

More terms from Emeric Deutsch, Apr 17 2006