A015742 Number of 7's in all the partitions of n into distinct parts.
0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 10, 12, 14, 18, 22, 25, 30, 36, 42, 50, 58, 67, 79, 92, 106, 123, 142, 164, 189, 217, 248, 284, 325, 370, 421, 479, 543, 616, 698, 788, 890, 1005, 1131, 1273, 1432, 1606, 1802
Offset: 1
Keywords
Examples
a(9)=1 because in the 8 (=A000009(9)) partitions of 9 into distinct parts, namely [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2] we have altogether one part equal to 7.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Maple
g:=x^7*product(1+x^j,j=1..60)/(1+x^7): gser:=series(g,x=0,57): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 17 2006
-
Mathematica
n7[n_]:=Count[Flatten[Select[IntegerPartitions[n],Max[Transpose[ Tally[#]][[2]]]==1&]],7]; Table[n7[n],{n,60}] (* Harvey P. Dale, Aug 30 2013 *) nmax = 100; Rest[CoefficientList[Series[x^7/(1+x^7) * Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 30 2015 *)
Formula
G.f.: x^7*(Product_{j>=1} (1+x^j))/(1+x^7). - Emeric Deutsch, Apr 17 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015
Extensions
More terms from Emeric Deutsch, Apr 17 2006