A016052 a(1) = 3; for n >= 1, a(n+1) = a(n) + sum of its digits.
3, 6, 12, 15, 21, 24, 30, 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, 147, 159, 174, 186, 201, 204, 210, 213, 219, 231, 237, 249, 264, 276, 291, 303, 309, 321, 327, 339, 354, 366, 381, 393, 408, 420, 426, 438, 453, 465, 480, 492
Offset: 1
References
- D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
- D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
- G. E. Stevens and L. G. Hunsberger, A Result and a Conjecture on Digit Sum Sequences, J. Recreational Math. 27, no. 4 (1995), pp. 285-288.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 34-35.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- D. R. Kaprekar, The Mathematics of the New Self Numbers [annotated and scanned]
- Index entries for Colombian or self numbers and related sequences
Programs
-
Haskell
a016052 n = a016052_list !! (n-1) a016052_list = iterate a062028 3 -- Reinhard Zumkeller, Oct 14 2013
-
Mathematica
NestList[# + Total[IntegerDigits[#]] &, 3, 51] (* Jayanta Basu, Aug 11 2013 *) a[1] = 3; a[n_] := a[n] = a[n - 1] + Total@ IntegerDigits@ a[n - 1]; Array[a, 80] (* Robert G. Wilson v, Jun 27 2014 *)
-
PARI
a_list(nn) = { my(f(n, i) = n + vecsum(digits(n)), S=vector(nn+1)); S[1]=3; for(k=2, #S, S[k] = fold(f, S[1..k-1])); S[2..#S] } \\ Satish Bysany, Mar 04 2017
-
Python
from itertools import islice def A016052_gen(): # generator of terms yield (a:=3) while True: yield (a:=a+sum(map(int,str(a)))) A016052_list = list(islice(A016052_gen(),20)) # Chai Wah Wu, Jun 16 2024
Formula
a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013
a(n) - a(n-1) = A084228(n+1). - Robert G. Wilson v, Jun 27 2014
Comments