A016096 a(n+1) = a(n) + sum of its digits, with a(1) = 9.
9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 117, 126, 135, 144, 153, 162, 171, 180, 189, 207, 216, 225, 234, 243, 252, 261, 270, 279, 297, 315, 324, 333, 342, 351, 360, 369, 387, 405, 414, 423, 432, 441, 450, 459, 477, 495, 513, 522, 531, 540
Offset: 1
References
- D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
- D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- D. R. Kaprekar, The Mathematics of the New Self Numbers [annotated and scanned]
- Index entries for Colombian or self numbers and related sequences
Programs
-
Haskell
a016096 n = a016096_list !! (n-1) a016096_list = iterate a062028 9 -- Reinhard Zumkeller, Oct 14 2013
-
Python
from itertools import islice def A016096_gen(): # generator of terms a = 9 while True: yield a a += sum(int(d) for d in str(a)) A016096_list = list(islice(A016096_gen(),20)) # Chai Wah Wu, Mar 29 2022
Formula
a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013