A016833 a(n) = (4n+2)^9.
512, 10077696, 1000000000, 20661046784, 198359290368, 1207269217792, 5429503678976, 19683000000000, 60716992766464, 165216101262848, 406671383849472, 922190162669056, 1953125000000000, 3904305912313344, 7427658739644928, 13537086546263552, 23762680013799936
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Mathematica
(4*Range[0,20]+2)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{512,10077696,1000000000,20661046784,198359290368,1207269217792,5429503678976,19683000000000,60716992766464,165216101262848},20] (* Harvey P. Dale, May 26 2018 *)
Formula
From Amiram Eldar, Apr 21 2023: (Start)
a(n) = A016825(n)^9.
a(n) = 2^9*A016761(n).
Sum_{n>=0} 1/a(n) = 511*zeta(9)/262144.
Sum_{n>=0} (-1)^n/a(n) = 277*Pi^9/4227858432. (End)