A017440 a(n) = (11*n + 4)^4.
256, 50625, 456976, 1874161, 5308416, 12117361, 24010000, 43046721, 71639296, 112550881, 168896016, 244140625, 342102016, 466948881, 623201296, 815730721, 1049760000, 1330863361, 1664966416, 2058346161, 2517630976, 3049800625, 3662186256, 4362470401, 5158686976, 6059221281
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (11*n+4)^4); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n+4)^4: n in [0..30]]; // G. C. Greubel, Sep 18 2019
-
Maple
seq((11*n + 4)^4, n=0..30); # G. C. Greubel, Sep 18 2019
-
Mathematica
(11*Range[30] -7)^4 (* G. C. Greubel, Sep 18 2019 *)
-
PARI
vector(30, n, (11*n-7)^4) \\ G. C. Greubel, Sep 18 2019
-
Sage
[(11*n+4)^4 for n in (0..30)] # G. C. Greubel, Sep 18 2019
Formula
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (256 +49345*x +206411*x^2 -92971*x^3 +2401*x^4)/(1-x)^5.
E.g.f.: (256 + 50369*x + 177991*x^2 + 109142*x^3 + 14641*x^4)*exp(x). (End)
Extensions
Terms a(20) onward added by G. C. Greubel, Sep 18 2019