A017577 a(n) = (12n+4)^9.
262144, 68719476736, 10578455953408, 262144000000000, 2779905883635712, 18014398509481984, 84590643846578176, 316478381828866048, 1000000000000000000, 2773078757450186752, 6930988311686938624, 15916595351771938816, 34068690316840665088, 68719476736000000000
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Mathematica
(12*Range[0,30]+4)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{262144,68719476736,10578455953408,262144000000000,2779905883635712,18014398509481984,84590643846578176,316478381828866048,1000000000000000000,2773078757450186752},40] (* Harvey P. Dale, Sep 07 2018 *)
Formula
From Amiram Eldar, Jul 14 2024: (Start)
a(n) = 262144 * A016785(n).
Sum_{n>=0} 1/a(n) = 809*Pi^9/(7313988648960*sqrt(3)) + 9841*zeta(9)/5159780352. (End)
Extensions
More terms from Amiram Eldar, Jul 14 2024