cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017687 Numerator of sum of -12th powers of divisors of n.

Original entry on oeis.org

1, 4097, 531442, 16781313, 244140626, 1088658937, 13841287202, 68736258049, 282430067923, 500122072361, 3138428376722, 1486382423891, 23298085122482, 28353876833297, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162, 2048500130460969
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017688 (denominator), A013670, A013671.

Programs

  • Magma
    [Numerator(DivisorSigma(12,n)/n^12): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Numerator[DivisorSigma[12, n]/n^12], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 12)/n^12)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017688(n) = zeta(12) (A013670).
Dirichlet g.f. of a(n)/A017688(n): zeta(s)*zeta(s+12).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017688(k) = zeta(13) (A013671). (End)