A017703 Numerator of sum of -20th powers of divisors of n.
1, 1048577, 3486784402, 1099512676353, 95367431640626, 1828080963947977, 79792266297612002, 1152922604119523329, 12157665462543713203, 50000047683716344601, 672749994932560009202, 638960608284819107651, 19004963774880799438802, 41834167608775550110577
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Numerator(DivisorSigma(20,n)/n^20): n in [1..20]]; // G. C. Greubel, Nov 05 2018
-
Mathematica
Table[Numerator[DivisorSigma[20, n]/n^20], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
-
PARI
vector(20, n, numerator(sigma(n, 20)/n^20)) \\ G. C. Greubel, Nov 05 2018
Formula
From Amiram Eldar, Apr 02 2024: (Start)
Dirichlet g.f. of a(n)/A017704(n): zeta(s)*zeta(s+20).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017704(k) = zeta(21). (End)
Comments