A017705 Numerator of sum of -21st powers of divisors of n.
1, 2097153, 10460353204, 4398048608257, 476837158203126, 609360030634117, 558545864083284008, 9223376434903384065, 109418989141972712413, 500000238418580150139, 7400249944258160101212, 11501285462682212701357, 247064529073450392704414, 146419516812481413403653
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A017706 (denominator).
Programs
-
Magma
[Numerator(DivisorSigma(21,n)/n^21): n in [1..20]]; // G. C. Greubel, Nov 05 2018
-
Mathematica
Table[Numerator[DivisorSigma[21, n]/n^21], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
-
PARI
vector(20, n, numerator(sigma(n, 21)/n^21)) \\ G. C. Greubel, Nov 05 2018
Formula
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017706(n) = zeta(21).
Dirichlet g.f. of a(n)/A017706(n): zeta(s)*zeta(s+21).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017706(k) = zeta(22). (End)
Comments