A018187 Restricted Perrin pseudoprimes.
27664033, 46672291, 102690901, 130944133, 517697641, 545670533, 801123451, 855073301, 970355431, 1235188597, 3273820903, 3841324339, 3924969689, 4982970241, 5130186571, 5242624003, 6335800411, 7045248121
Offset: 1
Keywords
References
- S. Wagon, Mathematica in action, 2nd ed., 1999, pp. 402 - 403 and Mathematica notebook for Chapter 18 in attached CD-ROM
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..712
- W. W. Adams and D. Shanks, Strong primality tests that are not sufficient, Math. Comp. 39 (1982), 255-300.
- Jon Grantham, There are infinitely many Perrin pseudoprimes, J. Number Theory 130 (2010) 1117-1128.
- Dana Jacobsen, Perrin Primality Tests.
- G. C. Kurtz, Daniel Shanks and H. C. Williams, Fast Primality Tests for Numbers < 50*10^9, Math. Comp., 46 (1986), 691-701.
- Eric Weisstein's World of Mathematics, Perrin Pseudoprime.
- Index entries for sequences related to pseudoprimes
Programs
-
PARI
is(n) = { lift(trace(Mod([0,1,0; 0,0,1; 1,1,0],n)^n)) == 0 && lift(trace(Mod([0,1,0; 0,0,1; 1,0,-1],n)^n)) == n-1; } forcomposite(n=1,1e8,is(n)&&print(n)) \\ Dana Jacobsen, Aug 03 2016
-
Perl
use ntheory ":all"; foroddcomposites { say if is_perrin_pseudoprime($,1); } 1e8; # _Dana Jacobsen, Aug 03 2016
Comments