A018226 Magic numbers of nucleons: nuclei with one of these numbers of either protons or neutrons are more stable against nuclear decay.
2, 8, 20, 28, 50, 82, 126
Offset: 1
References
- Dictionary of Science (Simon and Schuster), see the entry for "Magic number".
Links
- S. Bjornholm, Clusters, condensed matter in embryonic form, Contemp. Phys. 31 1990 pp. 309-324 (p. 312).
- Encyclopedia Britannica, magic number
- J. Fridmann et al., 'Magic' nucleus 42-Si, Nature, 435 (2005), 922-924 and 897-898.
- J. Glanz, Uut and Uup Add Their Atomic Mass to Periodic Table, New York Times, Feb 01, 2003, pages 1 and 26.
- R. V. F. Janssens, Unexpected doubly magic nucleus, Nature, 459 (Jun 25 2009), 1069-1070. [_Added by N. J. A. Sloane, Jul 05 2009]
- Radoslav Jovanovic, Magic Numbers and the Pascal Triangle
- Lutvo Kuric, Digital nuclear shell model, International Letters of Chemistry, Physics and Astronomy, 13(2) (2014) 160-173; ISSN 2299-3843.
- V. Ladma, Magic Numbers
- NAPC Isotope Hydrology Section, Chapter 2, Atomic Systematics and Nuclear Structure [Broken link?]
- R. Nave, Shell Model of Nucleus
- R. Nave, Enhanced Abundance of Magic Number Nuclei
- Rachele Nerattini, Johann S. Brauchart, and Michael K.-H. Kiessling, Magic numbers in Smale's 7th problem, arXiv:1307.2834v1 [math-ph], July 10, 2013.
- Phys.org, Evidence for a new nuclear 'magic number', Oct 9, 2013.
- D. Steppenbeck et al., Evidence for a new nuclear 'magic number' from the level structure of 54Ca, Nature, 2013 DOI: 10.1038/nature12522.
- D. Warner, Not-so-magic numbers, Nature, 430 (Jul 29 2004), 517-519.
- D. Weise, The Pythagorean Approach to Problems of Periodicity in Chemistry and Nuclear Physics
- Wikipedia, Magic number (physics)
Crossrefs
Formula
If 1 <= n <= 3 then a(n)=n*(n+1)*(n+2)/3, else if 4 <= n <= 7 then a(n)=n(n^2+5)/3. - Omar E. Pol, Jul 07 2009 [This needs to be clarified. - Joerg Arndt, May 03 2011]
From Daniel Forgues, May 03 2011: (Start)
If 1 <= n <= 3 then a(n) = 2 T_n, else
if 4 <= n <= 7 then a(n) = 2 (T_n - t_{n-1}),
where T_n is the n-th tetrahedral number, t_n the n-th triangular number.
G.f.: (2*x*(1 - 6*x^3 + 14*x^4 - 11*x^5 + 3*x^6))/(1 - x)^4, 1 <= n <= 7.
Using those formulas for n >= 0 gives A162626. (End)
a(n) = n*(n^2+5)/3 + (4*n-6)*A171386(n). - Omar E. Pol, Aug 14 2013
Comments