cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018241 Number of simple allowable sequences on 1..n.

Original entry on oeis.org

1, 1, 2, 32, 4608, 7028736, 132089118720, 34998332896051200, 147462169661142781132800, 11008782516353752266715850342400, 16061608070479103314001351327405309952000, 500842967990688435516159987675099451681186775040000
Offset: 1

Views

Author

Keywords

References

  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
  • G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.

Crossrefs

Programs

  • Maple
    A018241 := proc(n) local i; (n-2)!*binomial(n,2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end;
  • Mathematica
    a[n_] := (n*(n-1)/2)!*(n-2)! / Product[ (2i+1)^(n-i-1), {i, 0, n-2}]; a[1] = 1; Table[ a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 25 2012 *)

Formula

a(n) = (n-2)!*C(n,2)! / (1^{n-1} * 3^{n-2} * ... * (2n-3)^1).
a(n) ~ Pi * exp(n^2/4 - 3*n/2 + 7/24) * n^(n^2/2 + n/2 - 13/24) / (A^(1/2) * 2^(n^2 - n/2 - 19/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014