A005118
Number of simple allowable sequences on 1..n containing the permutation 12...n.
Original entry on oeis.org
1, 1, 1, 2, 16, 768, 292864, 1100742656, 48608795688960, 29258366996258488320, 273035280663535522487992320, 44261486084874072183645699204710400, 138018895500079485095943559213817088756940800
Offset: 0
- D. B. A. Epstein with J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson and W. P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992. xii+330 pp.
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..40
- Omer Angel, Alexander E. Holroyd, Dan Romik, and Balint Virag, Random Sorting Networks, arXiv preprint arXiv:0609538 [math.PR], 2006.
- Joerg Arndt, The a(4)=16 Young tableaux of shape [3, 2, 1].
- Sara C. Billey and Peter R. W. McNamara, The contributions of Stanley to the fabric of symmetric and quasisymmetric functions, arXiv preprint, 2015.
- Tobias Boege, Alessio D'Alì, Thomas Kahle, Bernd Sturmfels, The Geometry of Gaussoids, arXiv:1710.07175 [math.CO], 2017.
- R. Davis and B. Sagan, Pattern-Avoiding Polytopes, 2016
- FindStat - Combinatorial Statistic Finder, The number of ways to write a permutation as a minimal length product of simple transpositions
- M. J. Hay, J. Schiff, and N. J. Fisch, Maximal energy extraction under discrete diffusive exchange, arXiv preprint arXiv:1508.03499 [physics.plasm-ph], 2015.
- H. Hiller, Combinatorics and intersection of Schubert varieties, Comment. Math. Helv. 57 (1982), 41-59.
- D. Kim, Finding k Shortest Paths in Cayley Graphs of Finite Groups, Graphs and Combinatorics 40, 120 (2024). See Formula at p. 13.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy]
- Joshua Maglione and Christopher Voll, Hall-Littlewood polynomials, affine Schubert series, and lattice enumeration, arXiv:2410.08075 [math.CO], 2024. See pp. 34, 39.
- R. P. Stanley, A combinatorial miscellany
- R. P. Stanley, Ordering events in Minkowski space, arXiv:math/0501256 [math.CO], 2005.
- R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5 (1984), 359-372.
-
A005118 := proc(n) local i; binomial(n,2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end;
-
Table[Binomial[n, 2]!/Product[(2*i + 1)^(n - i - 1), {i, 0, n - 2}], {n, 0, 10}] (* T. D. Noe, May 29 2012 *)
A003121
Strict sense ballot numbers: n candidates, k-th candidate gets k votes.
Original entry on oeis.org
1, 1, 1, 2, 12, 286, 33592, 23178480, 108995910720, 3973186258569120, 1257987096462161167200, 3830793890438041335187545600, 123051391839834932169117010215648000, 45367448380314462649742951646437285434233600, 207515126854334868747300581954534054343817468395494400
Offset: 0
From _R. H. Hardin_, Jul 06 2012: (Start)
The a(4) = 12 ways to fill a triangle with the numbers 0 through 9:
.
5 6 6 5
3 7 3 7 2 7 2 7
1 4 8 1 4 8 1 4 8 1 4 8
0 2 6 9 0 2 5 9 0 3 5 9 0 3 6 9
.
5 3 3 4
3 6 2 6 2 7 3 7
1 4 8 1 5 8 1 5 8 1 5 8
0 2 7 9 0 4 7 9 0 4 6 9 0 2 6 9
.
4 4 5 4
2 6 2 7 2 6 3 6
1 5 8 1 5 8 1 4 8 1 5 8
0 3 7 9 0 3 6 9 0 3 7 9 0 2 7 9
.
(End)
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..30
- E. Aas and S. Linusson, Continuous multiline queues and TASEP, 2014; also arxiv version, arXiv:1501.04417 [math.CO], 2015-2017.
- Joerg Arndt, The a(5)=286 Young tableaux of shape [1,2,3,4,5].
- D. E. Barton and C. L. Mallows, Some aspects of the random sequence, Ann. Math. Statist. 36 (1965) 236-260.
- Andrew Beveridge, Ian Calaway, and Kristin Heysse, de Finetti Lattices and Magog Triangles, arXiv:1912.12319 [math.CO], 2019.
- R. Davis and B. Sagan, Pattern-Avoiding Polytopes, arXiv:1609.01782 [math.CO], 2016.
- William T. Dugan, Maura Hegarty, Alejandro H. Morales, and Annie Raymond, Generalized Pitman-Stanley flow polytopes, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #80.
- William T. Dugan, Maura Hegarty, Alejandro H. Morales, and Annie Raymond, Generalized Pitman-Stanley polytope: vertices and faces, arXiv:2307.09925 [math.CO], 2023.
- S. Fishel and L. Nelson, Chains of maximum length in the Tamari lattice, Proc. Amer. Math. Soc. 142 (2014), 3343-3353.
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- H. Hiller, Combinatorics and intersection of Schubert varieties, Comment. Math. Helv. 57 (1982), 41-59.
- C. Hohlweg, C. Lange, and H. Thomas, Permutahedra and generalized associahedra, arXiv:0709.4241 [math.CO], 2007-2008; Adv. Math. 226 (2011), no. 1, 608-640.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy]
- Joshua Maglione and Christopher Voll, Hall-Littlewood polynomials, affine Schubert series, and lattice enumeration, arXiv:2410.08075 [math.CO], 2024. See pp. 30, 39.
- Colin Mallows, Letter to N. J. A. Sloane, date unknown.
- Svante Linusson and Samu Potka, New properties of the Edelman-Greene bijection, arXiv:1804.10034 [math.CO], 2018.
- N. Reading, Cambrian lattices, arXiv:math/0402086 [math.CO], 2004-2005; Adv. Math. 205 (2006), no. 2, 313-353.
- F. Ruskey, Generating linear extensions of posets by transpositions, J. Combin. Theory, B 54 (1992), 77-101.
- B. Shapiro and M. Shapiro, A few riddles behind Rolle's theorem, arXiv:math/0302215 [math.CA], 2003-2005; Amer. Math. Monthly, 119 (2012), 787-795.
- George Story, Counting Maximal Chains in Weighted Voting Posets, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14, No. 1, 2013.
- R. M. Thrall, A combinatorial problem, Michigan Math. J. 1, (1952), 81-88.
- Dennis White, Sign-balanced posets, Journal of Combinatorial Theory, Series A, Volume 95, Issue 1, July 2001, Pages 1-38.
- Wikipedia, Tamari lattice
-
f:= n-> ((n*n+n)/2)!*mul((i-1)!/(2*i-1)!, i=1..n); seq(f(n), n=0..20);
-
f[n_] := (n (n + 1)/2)! Product[(i - 1)!/(2 i - 1)!, {i, n}]; Array[f, 14, 0] (* Robert G. Wilson v, May 14 2013 *)
-
a(n)=((n*n+n)/2)!*prod(i=1,n,(i-1)!/(2*i-1)!)
Showing 1-2 of 2 results.
Comments