A083568 Duplicate of A003121.
1, 1, 2, 12, 286, 33592, 23178480, 108995910720, 3973186258569120
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins: 1; 1; 1, 1; 1, 4, 2, 2; 1, 10, 22, 22, 18, 13, 12; 1, 20, 112, 232, 382, 348, 456, 390, 420, 334, 286; ... The transposed triangle, as given by Nelson, begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 4, 10, 20, 35, 56, 84, ... 2, 22, 112, 392, 1092, 2604, ... 2, 22, 232, 1744, 9220, 37444, ... 18, 382, 4474, 40414, 280214, ... 13, 348, 8435, 123704, 1321879, ... 12, 456, 12732, 276324, 4578596, ... 390, 17337, 550932, 12512827, ... 420, 21158, 917884, 29499764, ... 334, 27853, 1510834, 62132126, ... 286, 33940, 2166460, 120837274, ... 41230, 3370312, 221484557, ... 45048, 4810150, 393364848, ... 50752, 7264302, 666955139, ... 41826, 10435954, 1134705692, ... 33592, 15227802, 1933708535, ... ...
s:= proc(n) s(n):=`if`(n=0, [], [s(n-1), []]) end: f:= l-> l=[] or l[1]=[] and f(l[2]): v:= proc(l) v(l):=`if`(f(l), [], [`if`(l[1]<>[], [l[1][1], [l[1][2], l[2]]], [][]), seq([w, l[2]], w=v(l[1])), seq([l[1], w], w=v(l[2]))]) end: p:= proc(l) p(l):=`if`(f(l), 1, add(expand(x*p(w)), w=v(l))) end: T:= n-> (h-> seq(coeff(h, x, i), i=ldegree(h)..degree(h)))(p(s(n))): seq(T(n), n=1..8); # Alois P. Heinz, Jan 02 2018
A007724 := proc(n) combinat[multinomial](3*n,n-1,n,n+1)/n/(2*n-1)/(2*n+1) ; end proc: seq(A007724(n),n=2..40) ; # R. J. Mathar, Jul 07 2023
Table[(3*n)!/((n-1)!*n!*(n+1)!)/(n*(2*n-1)*(2*n+1)),{n,2,10}] (* Vaclav Kotesovec, Nov 13 2014 *) Table[(-1)^n HypergeometricPFQ[{-2 - 2 n, -2 n, -2 n - 1}, {2, 3}, 1], {n, 19}] (* Michael De Vlieger, Aug 22 2016 *)
{a(n) = if(n<2, 0, (3*n)!/((2*n+1) * (2*n-1) * (n+1)! * n!^2))}; /* Michael Somos, Jul 04 2020 */
E.g. 201 = 11001001, so P(201) = {169, 197, 200}, a(201) = a(169) + a(197) + a(200).
P:= proc(n) local h, i, m, s, t; t:= irem(n, 2, 'm'); s:= `if`(t=1, {n-1}, {}); for i from 0 while m>0 do h:= irem(m, 2, 'm'); if h=1 and t=0 then s:= s union {n- 2^i} fi; t:=h od; s end: a:= proc(n) a(n):= `if`(n=0, 1, add(a(k), k=P(n))) end: seq (a(n), n=0..80); # Alois P. Heinz, Jul 06 2012
P[n_] := Module[{h, i, m, s, t}, {m, t} = QuotientRemainder[n, 2]; s = If[t == 1, {n-1}, {}]; For[i = 0, m>0, i++, {m, h} = QuotientRemainder[m, 2]; If[h == 1 && t == 0, s = s ~Union~ {n-2^i}]; t = h]; s]; a[n_] := a[n] = If[n == 0, 1, Sum[a[k], {k, P[n]}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 11 2015, after Alois P. Heinz *)
A018241 := proc(n) local i; (n-2)!*binomial(n,2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end;
a[n_] := (n*(n-1)/2)!*(n-2)! / Product[ (2i+1)^(n-i-1), {i, 0, n-2}]; a[1] = 1; Table[ a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 25 2012 *)
From _Joerg Arndt_, May 21 2016: (Start) The a(7) = 27 tableaux correspond to the following ballot sequences (dots denote zeros). ##: ballot sequence partition 01: [ . . . . . . . ] [ 7 . . . . . . ] 02: [ . . . . . . 1 ] [ 6 1 . . . . . ] 03: [ . . . . . 1 . ] [ 6 1 . . . . . ] 04: [ . . . . . 1 1 ] [ 5 2 . . . . . ] 05: [ . . . . 1 . . ] [ 6 1 . . . . . ] 06: [ . . . . 1 . 1 ] [ 5 2 . . . . . ] 07: [ . . . . 1 1 . ] [ 5 2 . . . . . ] 08: [ . . . . 1 1 1 ] [ 4 3 . . . . . ] 09: [ . . . . 1 1 2 ] [ 4 2 1 . . . . ] 10: [ . . . 1 . . . ] [ 6 1 . . . . . ] 11: [ . . . 1 . . 1 ] [ 5 2 . . . . . ] 12: [ . . . 1 . 1 . ] [ 5 2 . . . . . ] 13: [ . . . 1 . 1 1 ] [ 4 3 . . . . . ] 14: [ . . . 1 . 1 2 ] [ 4 2 1 . . . . ] 15: [ . . . 1 1 . . ] [ 5 2 . . . . . ] 16: [ . . . 1 1 . 1 ] [ 4 3 . . . . . ] 17: [ . . . 1 1 . 2 ] [ 4 2 1 . . . . ] 18: [ . . . 1 1 2 . ] [ 4 2 1 . . . . ] 19: [ . . 1 . . . . ] [ 6 1 . . . . . ] 20: [ . . 1 . . . 1 ] [ 5 2 . . . . . ] 21: [ . . 1 . . 1 . ] [ 5 2 . . . . . ] 22: [ . . 1 . . 1 1 ] [ 4 3 . . . . . ] 23: [ . . 1 . . 1 2 ] [ 4 2 1 . . . . ] 24: [ . . 1 . 1 . . ] [ 5 2 . . . . . ] 25: [ . . 1 . 1 . 1 ] [ 4 3 . . . . . ] 26: [ . . 1 . 1 . 2 ] [ 4 2 1 . . . . ] 27: [ . . 1 . 1 2 . ] [ 4 2 1 . . . . ] (End)
The 10 sequences for n=4 are dcbadcbdcd dcbadcdbcd dcbdacbdcd dcbdacdbcd dcbdcabdcd dcbdcadbcd dcbdcdabcd dcdbacdbcd dcdbcadbcd dcdbcdabcd. For example in dcbdacdbcd we see ..ba...b.. .cb..c.bc. d.bd..db.d dc.d.cd.cd
a(3) = 2 because there are 2 possible orderings of the 6 products a1^2, a2^2, a3^2, a1*a2, a1*a3, a2*a3. Specifically, these orderings are: a1^2 > a1a2 > a2^2 > a1a3 > a2a3 > a3^2 and a1^2 > a1a2 > a1a3 > a2^2 > a2a3 > a3^2.
For n=2 the a(2)=1 ordered partition is {(1,1)}<{(2,1),(1,2)}<{(2,2)}. We can encode this as 11<12<22, writing "ij" for the pair (i,j). For n=3 one of the a(3)=3 ordered partitions is {(1,1)}<{(1,2),(2,1)}<{(1,3),(3,1),(2,2)}<{(2,3),(3,2)}<{(3,3)}, which is encoded as either 11<12<13=22<23<33 or 11<12<22=13<23<33. The other two ordered partitions can be encoded as 11<12<22<13<23<33 and 11<12<13<22<23<33. From _Andrew Howroyd_, Sep 15 2024: (Start) The a(3) = 3 symmetric matrices are: [1 2 3] [1 2 3] [1 2 4] [2 3 4] [2 4 5] [2 3 5] [3 4 5] [3 5 6] [4 5 6] (End)
\\ See PARI link in A374514 for program code. vector(10, n, A376162(n)) \\ Andrew Howroyd, Sep 16 2024
Comments