A006245
Number of primitive sorting networks on n elements; also number of rhombic tilings of a 2n-gon.
Original entry on oeis.org
1, 1, 2, 8, 62, 908, 24698, 1232944, 112018190, 18410581880, 5449192389984, 2894710651370536, 2752596959306389652, 4675651520558571537540, 14163808995580022218786390, 76413073725772593230461936736
Offset: 1
This is a wiring diagram, one sample of the 62 objects that are counted for n=5:
1-1-1-1 4-4 5-5
X X
2 3-3 4 1 5 4-4
X X X
3 2 4 3 5 1 3-3
X X X
4-4 2 5 3-3 1 2
X X
5-5-5 2-2-2-2 1
Each X denotes a comparator that exchanges the two incoming strands from the left. The whole network has n*(n-1)/2 such comparators and exchanges the order 12345 at the left edge into the reverse order 54321 at the right edge. It is also a pseudoline arrangement consisting of n x-monotone curves (from left to right), which pairwise cross exactly once.
- Shin-ichi Minato, Counting by ZDD, Encyclopedia of Algorithms, 2014, pp. 1-6.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Armstrong, The sorting order on a Coxeter group, Journal of Combinatorial Theory 116 (2009), no. 8, 1285-1305.
- M. Balko, R. Fulek, and J. Kynčl, Crossing Numbers and Combinatorial Characterization of Monotone Drawings of K_n, Discrete & Computational Geometry, Volume 53, Issue 1, 2015, Pages 107-143.
- Helena Bergold, Stefan Felsner, and Manfred Scheucher, Extendability of higher dimensional signotopes, Proc. 38th Eur. Wksp. Comp. Geom. (EuroCG), 2022. See also arXiv:2303.04079 [math.CO], 2023.
- Herman Chau, On Enumerating Higher Bruhat Orders Through Deletion and Contraction, arXiv:2412.10532 [math.CO], 2024. See p. 2.
- Yunhyung Cho, Jang Soo Kim, and Eunjeong Lee, Enumerate of Gelfand-Cetlin type reduced words, arXiv:2009.06906 [math.CO], 2020. Mentions this sequence.
- Fernando Cortés Kühnast, Justin Dallant, Stefan Felsner, and Manfred Scheucher, An Improved Lower Bound on the Number of Pseudoline Arrangements, arXiv:2402.13107 [math.CO], 2024. See p. 2.
- H. Denoncourt, D. C. Ernst, and D. Story, On the number of commutation classes of the longest element in the symmetric group, arXiv:1602.08328 [math.HO], 2016.
- Adrian Dumitrescu and Ritankar Mandal, New Lower Bounds for the Number of Pseudoline Arrangements, arXiv:1809.03619 [math.CO], 2018.
- Stefan Felsner, On the number of arrangements of pseudolines, Proceedings of the twelfth annual symposium on Computational geometry. ACM, 1996. Also Discrete and Computational Geometry, 18 (1997),257-267. Gives a(10).
- Stefan Felsner and Jacob E. Goodman, Pseudoline Arrangements, Chapter 5 of Handbook of Discrete and Computational Geometry, CRC Press, 2017, see Table 5.6.1. [Specific reference for this sequence] - _N. J. A. Sloane_, Nov 14 2023
- S. Felsner and P. Valtr, Coding and Counting Arrangements of Pseudolines, Discrete and Computational Geometry, 46(3) (2011), 405-416.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics Volume 109, Issues 1-2, 2001, Pages 67-94.
- J. Folkman and J. Lawrence, Oriented matroids, Journal of Combinatorial Theory, Series B 25 (1978), no. 2, 199-236.
- Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry, CRC Press, 2017, see Table 5.6.1. [General reference for 2017 edition of the Handbook] - _N. J. A. Sloane_, Nov 14 2023
- M. J. Hay, J. Schiff, and N. J. Fisch, Available free energy under local phase space diffusion, arXiv preprint arXiv:1604.08573 [math-ph], 2016, see Footnote 27.
- J. Kawahara, T. Saitoh, R. Yoshinaka, and S. Minato, Counting Primitive Sorting Networks by PiDDs, Hokkaido University, Division of Computer Science, TCS Technical Reports, TCS-TR-A-11-54, Oct. 2011.
- D. E. Knuth, Axioms and Hulls, Lect. Notes Comp. Sci., Vol. 606 (1992) p. 35. [From _R. J. Mathar_, Apr 02 2009]
- Ricardo Mamede, The commutation classes of a permutation, 14th Comb. Days, Univ. Coimbra (Portugal, 2024). See slide 10.
- S. Minato, Techniques of BDD/ZDD: Brief History and Recent Activity, IEICE Transactions on Information and Systems, Vol. E96-D, No. 7, pp.1419-1429.
- Yan Alves Radtke, Stefan Felsner, Johannes Obenaus, Sandro Roch, Manfred Scheucher, and Birgit Vogtenhuber, Flip Graph Connectivity for Arrangements of Pseudolines and Pseudocircles, arXiv:2310.19711 [math.CO], 2023. See p. 41.
- Matthew J. Samuel, Word posets, complexity, and Coxeter groups, arXiv:1101.4655 [math.CO], 2011.
- M. J. Samuel, Word posets, with applications to Coxeter groups, arXiv preprint arXiv:1108.3638 [cs.DM], 2011.
- Manfred Scheucher, C++ program for enumeration
- B. E. Tenner, Tiling-based models of perimeter and area, arXiv:1811.00082 [math.CO], 2018.
- M. Widom, N. Destainville, R. Mosseri, and F. Bailly, Two-dimensional random tilings of large codimension, Proceedings of the 7th International Conference on Quasicrystals (ICQ7, Stuttgart), arXiv:cond-mat/9912275 [cond-mat.stat-mech], 1999.
- M. Widom, N. Destainville, R. Mosseri, and F. Bailly, Two-dimensional random tilings of large codimension, Materials Science and Engineering: A, Volumes 294-296, 15 December 2000, Pages 409-412.
- Katsuhisa Yamanaka, Takashi Horiyama, Takeaki Uno, and Kunihiro Wasa, Ladder-Lottery Realization, 30th Canadian Conference on Computational Geometry (CCCG 2018) Winnipeg.
- K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and K. Nakada, Efficient enumeration of all ladder lotteries and its application, Theoretical Computer Science, Vol. 411, pp. 1714-1722, 2010.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
- Index entries for sequences related to sorting.
-
# classes: Wrapper for computing number of commutation classes;
# pass a permutation as a list
# Returns number of commutation classes of reduced words
# Longest element is of the form [n, n-1, ..., 1] (see Comments)
classes:=proc(perm) option remember:
RETURN(classesRecurse(Array(perm), 0, 1)):
end:
#classesRecurse: Recursive procedure for computing number of commutation classes
classesRecurse:=proc(perm, spot, negs) local swaps, i, sums, c, doneany:
sums:=0:
doneany:=0:
for i from spot to ArrayNumElems(perm)-2 do
if perm[i+1]>perm[i+2] then
swaps:=perm[i+1]:
perm[i+1]:=perm[i+2]:
perm[i+2]:=swaps:
c:=classes(convert(perm, `list`)):
sums:=sums+negs*c+classesRecurse(perm, i+2, -negs):
swaps:=perm[i+1]:
perm[i+1]:=perm[i+2]:
perm[i+2]:=swaps:
doneany:=1:
end:
end:
if spot=0 and doneany=0 then RETURN(1):
else RETURN(sums):
end:
end:
seq(classes([seq(n+1-i, i = 1 .. n)]), n = 1 .. 9)
# Matthew J. Samuel, Jan 23 2011, Jan 26 2011
-
classes[perm_List] := classes[perm] = classesRecurse[perm, 0, 1];
classesRecurse[perm_List, spot_, negs_] := Module[{swaps, i, Sums, c, doneany, prm = perm}, Sums = 0; doneany = 0; For[i = spot, i <= Length[prm]-2, i++, If[prm[[i+1]] > prm[[i+2]], swaps = prm[[i+1]]; prm[[i+1]] = prm[[i+2]]; prm[[i+2]] = swaps; c = classes[prm]; Sums = Sums + negs*c + classesRecurse[prm, i+2, -negs]; swaps = prm[[i+1]]; prm[[i+1]] = prm[[i+2]]; prm[[i+2]] = swaps; doneany = 1]]; If[spot == 0 && doneany == 0, Return[1], Return[Sums]]];
a[n_] := a[n] = classes[Range[n] // Reverse];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 9}] (* Jean-François Alcover, May 09 2017, translated from Maple *)
More terms from Sebastien Veigneau (sv(AT)univ-mlv.fr), Jan 15 1997
a(10) confirmed by Katsuhisa Yamanaka(yamanaka(AT)hol.is.uec.ac.jp), May 06 2009. This value was also confirmed by Takashi Horiyama of Saitama Univ.
a(11) from Katsuhisa Yamanaka(yamanaka(AT)hol.is.uec.ac.jp), May 06 2009
Reference with formula that the Maple program implements added and a(11) verified by
Matthew J. Samuel, Jan 25 2011
Removed invalid comment concerning the denominators of the indicated polynomials; added a(12). -
Matthew J. Samuel, Jan 30 2011
A057863
a(n) = Product_{k=1..n} (2k-1)!!.
Original entry on oeis.org
1, 1, 3, 45, 4725, 4465125, 46414974375, 6272287562165625, 12714083695698776015625, 438120013555654794702228515625, 286849911214281324754704976473779296875, 3943988517696329309474874414036059896739501953125
Offset: 0
G.f. = 1 + x + 3*x^2 + 45*x^3 + 4725*x^4 + 4465125*x^5 + ... - _Michael Somos_, Jan 18 2023
- Alois P. Heinz, Table of n, a(n) for n = 0..35
- Alejandro H. Morales, Igor Pak, and Greta Panova, Hook formulas for skew shapes III. Multivariate and product formulas, arXiv:1707.00931 [math.CO], 2017.
- A. P. Veselov and R. Wilcox, Burchnall-Chaundy polynomials and the Laurent Phenomenon, arXiv:1407.7394 [math-ph], 2014.
- Eric Weisstein's World of Mathematics, Barnes G-Function
-
a:= n-> mul((2*k+1)^(n-k), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Nov 28 2012
-
a[n_] := Product[2^i Gamma[1/2+i]/Sqrt[Pi], {i, n}]
Table[Product[(2*k+1)^(n-k),{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
Table[Product[(2k-1)!!,{k,1,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
Table[2^(n(n+1)/2-1/24) Glaisher^(3/2) Pi^(-n/2-1/4) E^(-1/8) BarnesG[n+3/2], {n, 0, 10}] (* Vladimir Reshetnikov, Nov 06 2015 *)
Table[Sqrt[BarnesG[2*n + 2]] / (2^(n^2/2) * BarnesG[n+1] * Sqrt[Gamma[n+1]]), {n, 0, 12}] (* Vaclav Kotesovec, Apr 08 2021 *)
-
a(n)=prod(k=0,n-1,prod(i=0,k,2*i+1))
A003121
Strict sense ballot numbers: n candidates, k-th candidate gets k votes.
Original entry on oeis.org
1, 1, 1, 2, 12, 286, 33592, 23178480, 108995910720, 3973186258569120, 1257987096462161167200, 3830793890438041335187545600, 123051391839834932169117010215648000, 45367448380314462649742951646437285434233600, 207515126854334868747300581954534054343817468395494400
Offset: 0
From _R. H. Hardin_, Jul 06 2012: (Start)
The a(4) = 12 ways to fill a triangle with the numbers 0 through 9:
.
5 6 6 5
3 7 3 7 2 7 2 7
1 4 8 1 4 8 1 4 8 1 4 8
0 2 6 9 0 2 5 9 0 3 5 9 0 3 6 9
.
5 3 3 4
3 6 2 6 2 7 3 7
1 4 8 1 5 8 1 5 8 1 5 8
0 2 7 9 0 4 7 9 0 4 6 9 0 2 6 9
.
4 4 5 4
2 6 2 7 2 6 3 6
1 5 8 1 5 8 1 4 8 1 5 8
0 3 7 9 0 3 6 9 0 3 7 9 0 2 7 9
.
(End)
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..30
- E. Aas and S. Linusson, Continuous multiline queues and TASEP, 2014; also arxiv version, arXiv:1501.04417 [math.CO], 2015-2017.
- Joerg Arndt, The a(5)=286 Young tableaux of shape [1,2,3,4,5].
- D. E. Barton and C. L. Mallows, Some aspects of the random sequence, Ann. Math. Statist. 36 (1965) 236-260.
- Andrew Beveridge, Ian Calaway, and Kristin Heysse, de Finetti Lattices and Magog Triangles, arXiv:1912.12319 [math.CO], 2019.
- R. Davis and B. Sagan, Pattern-Avoiding Polytopes, arXiv:1609.01782 [math.CO], 2016.
- William T. Dugan, Maura Hegarty, Alejandro H. Morales, and Annie Raymond, Generalized Pitman-Stanley flow polytopes, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #80.
- William T. Dugan, Maura Hegarty, Alejandro H. Morales, and Annie Raymond, Generalized Pitman-Stanley polytope: vertices and faces, arXiv:2307.09925 [math.CO], 2023.
- S. Fishel and L. Nelson, Chains of maximum length in the Tamari lattice, Proc. Amer. Math. Soc. 142 (2014), 3343-3353.
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- H. Hiller, Combinatorics and intersection of Schubert varieties, Comment. Math. Helv. 57 (1982), 41-59.
- C. Hohlweg, C. Lange, and H. Thomas, Permutahedra and generalized associahedra, arXiv:0709.4241 [math.CO], 2007-2008; Adv. Math. 226 (2011), no. 1, 608-640.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy]
- Joshua Maglione and Christopher Voll, Hall-Littlewood polynomials, affine Schubert series, and lattice enumeration, arXiv:2410.08075 [math.CO], 2024. See pp. 30, 39.
- Colin Mallows, Letter to N. J. A. Sloane, date unknown.
- Svante Linusson and Samu Potka, New properties of the Edelman-Greene bijection, arXiv:1804.10034 [math.CO], 2018.
- N. Reading, Cambrian lattices, arXiv:math/0402086 [math.CO], 2004-2005; Adv. Math. 205 (2006), no. 2, 313-353.
- F. Ruskey, Generating linear extensions of posets by transpositions, J. Combin. Theory, B 54 (1992), 77-101.
- B. Shapiro and M. Shapiro, A few riddles behind Rolle's theorem, arXiv:math/0302215 [math.CA], 2003-2005; Amer. Math. Monthly, 119 (2012), 787-795.
- George Story, Counting Maximal Chains in Weighted Voting Posets, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14, No. 1, 2013.
- R. M. Thrall, A combinatorial problem, Michigan Math. J. 1, (1952), 81-88.
- Dennis White, Sign-balanced posets, Journal of Combinatorial Theory, Series A, Volume 95, Issue 1, July 2001, Pages 1-38.
- Wikipedia, Tamari lattice
-
f:= n-> ((n*n+n)/2)!*mul((i-1)!/(2*i-1)!, i=1..n); seq(f(n), n=0..20);
-
f[n_] := (n (n + 1)/2)! Product[(i - 1)!/(2 i - 1)!, {i, n}]; Array[f, 14, 0] (* Robert G. Wilson v, May 14 2013 *)
-
a(n)=((n*n+n)/2)!*prod(i=1,n,(i-1)!/(2*i-1)!)
A219311
Number T(n,k) of standard Young tableaux for partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 9, 0, 1, 14, 16, 0, 1, 34, 35, 0, 1, 55, 134, 0, 1, 125, 435, 0, 1, 209, 1213, 768, 0, 1, 461, 3454, 2310, 0, 1, 791, 10484, 11407, 0, 1, 1715, 28249, 44187, 0, 1, 3002, 80302, 200044, 0, 1, 6434, 231895, 680160, 292864
Offset: 0
A(4,2) = 3:
+---------+ +---------+ +---------+
| 1 2 3 | | 1 2 4 | | 1 3 4 |
| 4 .-----+ | 3 .-----+ | 2 .-----+
+---+ +---+ +---+
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 2;
0, 1, 3;
0, 1, 9;
0, 1, 14, 16;
0, 1, 34, 35;
0, 1, 55, 134;
0, 1, 125, 435;
0, 1, 209, 1213, 768;
0, 1, 461, 3454, 2310;
0, 1, 791, 10484, 11407;
...
Columns k=0-10 give:
A000007,
A000012 (for n>0),
A047171(n) =
A037952(n)-1,
A219316,
A219317,
A219318,
A219319,
A219320,
A219321,
A219322,
A219323.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, k, l) `if`(n=0, h(l), `if`(n>k*(i-(k-1)/2), 0,
g(n, i-1, min(k, i-1), l)+`if`(i>n, 0, g(n-i, i-1, k-1, [l[], i]))))
end:
A:= proc(n, k) option remember; `if`(k<0, 0, g(n, n, k, [])) end:
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20);
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ];
g[n_, i_, k_, l_] := If[n == 0, h[l], If[n > k*(i-(k-1)/2), 0, g[n, i-1, Min[k, i-1], l] + If[i > n, 0, g[n-i, i-1, k-1, Append[l, i]]]]];
a[n_, k_] := a[n, k] = If[k < 0, 0, g[n, n, k, {}]];
t[n_, k_] := a[n, k] - a[n, k-1];
Table[Table[t[n, k], {k, 0, Floor[(Sqrt[1+8*n]-1)/2]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
A219274
Number T(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 5, 16, 1, 4, 9, 49, 70, 168, 768, 1, 5, 14, 92, 204, 738, 3300, 7887, 15015, 48048, 292864, 1, 6, 20, 153, 405, 1815, 9460, 28743, 101673, 333905, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 1, 7, 27, 235, 715, 3630, 21307
Offset: 0
T(3,2) = 2:
+------+ +------+
| 1 2 | | 1 3 |
| 3 .--+ | 2 .--+
+---+ +---+
Triangle T(n,k) begins:
1;
. 1;
. 1;
. 2, 1;
. 3, 1;
. 5, 4, 1;
. 16, 9, 5, 1;
. 49, 14, 6, 1;
. 70, 92, 20, 7, 1;
. 168, 204, 153, 27, 8, 1;
. 768, 738, 405, 235, 35, 9, 1;
Column heights are
A000124(k-1) for k>0.
Leftmost nonzero elements give
A219339.
Column of leftmost nonzero element is
A002024(n) for n>0.
Triangle read by rows reversed gives:
A219356.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
T:= (n, k)-> `if`(k>n, 0, g(n-k, k-1, [k])):
seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..7);
-
h[l_] := Module[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := Module[{s = i(i + 1)/2}, If[n == s, h[Join[l, Table[i - j, {j, 0, i - 1}]]], If[n > s, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Append[l, i]]]]]];
T[n_, k_] := If[k > n, 0, g[n - k, k - 1, {k}]];
Table[Table[T[n, k], {n, k, k(k + 1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Sep 01 2023, after Alois P. Heinz *)
A143672
Number of chains (totally ordered subsets) in the poset of Dyck paths ordered by inclusion.
Original entry on oeis.org
1, 2, 4, 24, 816, 239968, 808814912, 38764383658368, 31491961129357837056, 503091371552266970507912704, 179763631086276515267399940231898112, 1609791936564515363272979180683040232936253440
Offset: 0
Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Aug 28 2008
a(3) = 24 since in D_3 there are 2 chains of length 3 (i.e., on 4 vertices in the Hasse diagram), 7 chains of length 2 (on 3 vertices), 9 chains of length 1 (on 2 vertices), 5 chains of length 0 (on 1 vertex) and the empty chain: 2 + 7 + 9 + 5 + 1 = 24 chains.
- R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.
-
d:= proc(x, y, l) option remember;
`if`(x=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)])
end:
le:= proc(l1, l2) local i;
for i to nops(l1) do if l1[i]>l2[i] then return false fi od;
true
end:
a:= proc(n) option remember; local l, m, g;
if n=0 then return 1 fi;
l:= d(n, n, []); m:= nops(l);
g:= proc(t) option remember;
1 +add(`if`(le(l[d], l[t]), g(d), 0), d=1..t-1);
end;
1+ add(g(h), h=1..m)
end:
seq(a(n), n=0..7); # Alois P. Heinz, Jul 26 2011
A219272
Number A(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part <= k; triangle A(n,k), k>=0, 0<=n<=k*(k+1)/2, read by columns.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 5, 16, 1, 1, 1, 3, 4, 9, 25, 49, 70, 168, 768, 1, 1, 1, 3, 4, 10, 30, 63, 162, 372, 1506, 3300, 7887, 15015, 48048, 292864, 1, 1, 1, 3, 4, 10, 31, 69, 182, 525, 1911, 5115, 17347, 43758, 149721, 626769, 1946516, 4934930
Offset: 0
A(3,2) = 2:
+------+ +------+
| 1 2 | | 1 3 |
| 3 .--+ | 2 .--+
+---+ +---+
A(3,3) = 3:
+------+ +------+ +---------+
| 1 2 | | 1 3 | | 1 2 3 |
| 3 .--+ | 2 .--+ +---------+
+---+ +---+
Triangle A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
. 1, 1, 1, 1, 1, 1, 1, 1, ...
. 1, 1, 1, 1, 1, 1, 1, ...
. 2, 3, 3, 3, 3, 3, 3, ...
. 3, 4, 4, 4, 4, 4, ...
. 5, 9, 10, 10, 10, 10, ...
. 16, 25, 30, 31, 31, 31, ...
. 49, 63, 69, 70, 70, ...
. 70, 162, 182, 189, 190, ...
Leftmost nonzero elements give
A219339.
Column of leftmost nonzero element is
A002024(n) for n>0.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, k), n=0..k*(k+1)/2), k=0..7);
-
h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = With[{s=i*(i+1)/2}, If[n==s, h[Join[l, Table[ i-j, {j, 0, i-1}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]];
A[n_, k_] := g[n, k, {}];
Table[Table[A[n, k], {n, 0, k*(k+1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz *)
A219339
Number of standard Young tableaux for partitions of n into distinct parts with largest part floor(sqrt(2*n)+1/2).
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 16, 49, 70, 168, 768, 3300, 7887, 15015, 48048, 292864, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 9732668946, 32773404950, 97848532782, 344699731090, 1020872973120, 5091106775040, 48608795688960, 586393249199550
Offset: 0
For n=5, we have floor(sqrt(2*n)+1/2) = 3, and a(5) = 5, because there are 5 standard Young tableaux for partitions of 5 into distinct parts with largest part 3:
+---------+ +---------+ +---------+ +---------+ +---------+
| 1 2 3 | | 1 2 4 | | 1 2 5 | | 1 3 4 | | 1 3 5 |
| 4 5 .--+ | 3 5 .--+ | 3 4 .--+ | 2 5 .--+ | 2 4 .--+
+------+ +------+ +------+ +------+ +------+
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
a:= n-> g(n, floor(sqrt(2*n)+1/2), []):
seq(a(n), n=0..30);
-
h[l_] := (n = Length[l]; Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]); g[n_, i_, l_] := g[n, i, l] = (s = i*(i+1)/2; If[n==s, h[Join[l, Table[i-j, {j, 0, i-1}]] ], If[n>s, 0, g[n, i-1, l]+If[i>n, 0, g[n-i, i-1, Append[l, i]]]]] ); a[n_] := g[n, Floor[Sqrt[2*n]+1/2], {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)
A018241
Number of simple allowable sequences on 1..n.
Original entry on oeis.org
1, 1, 2, 32, 4608, 7028736, 132089118720, 34998332896051200, 147462169661142781132800, 11008782516353752266715850342400, 16061608070479103314001351327405309952000, 500842967990688435516159987675099451681186775040000
Offset: 1
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
- Alois P. Heinz, Table of n, a(n) for n = 1..40
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy]
- R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5 (1984), 359-372.
-
A018241 := proc(n) local i; (n-2)!*binomial(n,2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end;
-
a[n_] := (n*(n-1)/2)!*(n-2)! / Product[ (2i+1)^(n-i-1), {i, 0, n-2}]; a[1] = 1; Table[ a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 25 2012 *)
A193536
Triangle T(n,k), n>=0, 0<=k<=C(n,2), read by rows: T(n,k) = number of k-length saturated chains in the poset of Dyck paths of semilength n ordered by inclusion.
Original entry on oeis.org
1, 1, 2, 1, 5, 5, 4, 2, 14, 21, 30, 38, 40, 32, 16, 42, 84, 168, 322, 578, 952, 1408, 1808, 1920, 1536, 768, 132, 330, 840, 2112, 5168, 12172, 27352, 58126, 115636, 212762, 356352, 532224, 687104, 732160, 585728, 292864, 429, 1287, 3960
Offset: 0
Poset of Dyck paths of semilength n=3:
.
. A A:/\ B:
. | / \ /\/\
. B / \ / \
. / \
. C D C: D: E:
. \ / /\ /\
. E /\/ \ / \/\ /\/\/\
.
Saturated chains of length k=0: A, B, C, D, E (5); k=1: A-B, B-C, B-D, C-E, D-E (5); k=2: A-B-C, A-B-D, B-C-E, B-D-E (4), k=3: A-B-C-E, A-B-D-E (2) => [5,5,4,2].
Triangle begins:
1;
1;
2, 1;
5, 5, 4, 2;
14, 21, 30, 38, 40, 32, 16;
42, 84, 168, 322, 578, 952, 1408, 1808, 1920, 1536, 768;
132, 330, 840, 2112, 5168, 12172, 27352, 58126, 115636, 212762, 356352, ...
-
d:= proc(x, y, l) option remember;
`if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)])
end:
T:= proc(n) option remember; local g, r, j;
g:= proc(l) option remember; local r, i;
r:= [1];
for i to n-1 do if l[i]>i and (i=1 or l[i-1]x+y, r, [0, g(subsop(i=l[i]-1, l))[]], 0)
fi od; r
end;
r:= [];
for j in d(n, n, []) do
r:= zip((x, y)->x+y, r, g(j), 0)
od; r[]
end:
seq(T(n), n=0..7);
-
zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; d[x_, y_, l_] := d[x, y, l] = If[x <= 1, {Prepend[l, y]}, Flatten[t = Table [d[x-1, i, Prepend[l, y]], {i, x-1, y}], 1]];
T[n_] := T[n] = Module[{g, r0}, g[l_] := g[l] = Module[{r, i}, r = {1}; For[i = 1, i <= n-1 , i++, If [l[[i]]>i && (i == 1 || l[[i-1]] < l[[i]]), r = zip[r, Join[{0}, g[ReplacePart[l, i -> l[[i]]-1]]]]]]; r]; r0 = {}; Do[r0 = zip[r0, g[j]], {j, d[n, n, {}]}]; r0]; Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Feb 13 2017, translated from Maple *)
Showing 1-10 of 18 results.
Comments