cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A006245 Number of primitive sorting networks on n elements; also number of rhombic tilings of a 2n-gon.

Original entry on oeis.org

1, 1, 2, 8, 62, 908, 24698, 1232944, 112018190, 18410581880, 5449192389984, 2894710651370536, 2752596959306389652, 4675651520558571537540, 14163808995580022218786390, 76413073725772593230461936736
Offset: 1

Views

Author

Keywords

Comments

Also the number of commutation classes of reduced words for the longest element of a Weyl group of type A_{n-1} (see Armstrong reference).
Also the number of signotopes of rank 3, i.e., mappings X:{{1..n} choose 3}->{+,-} such that for any four indices a < b < c < d, the sequence X(a,b,c), X(a,b,d), X(a,c,d), X(b,c,d) changes its sign at most once (see Felsner-Weil and Balko-Fulek-Kynčl reference). - Manfred Scheucher, Oct 20 2019
There is a relation to non-degenerate oriented matroids of rank 3 on n elements (see Folkman-Lawrence reference). - Manfred Scheucher, Feb 09 2022, based on comment by Matthew J. Samuel, Jan 19 2013
Also the number of tilings of the 2-dimensional zonotope constructed from D vectors. The zonotope Z(D,d) is the projection of the D-dimensional hypercube onto the d-dimensional space and the tiles are the projections of the d-dimensional faces of the hypercube. Here d=2 and D varies.
Also the number of simple arrangements of n pseudolines in the Euclidean plane. - Manfred Scheucher, Jun 22 2023

Examples

			This is a wiring diagram, one sample of the 62 objects that are counted for n=5:
  1-1-1-1 4-4 5-5
         X   X
  2 3-3 4 1 5 4-4
   X   X   X
  3 2 4 3 5 1 3-3
     X   X   X
  4-4 2 5 3-3 1 2
       X       X
  5-5-5 2-2-2-2 1
Each X denotes a comparator that exchanges the two incoming strands from the left. The whole network has n*(n-1)/2 such comparators and exchanges the order 12345 at the left edge into the reverse order 54321 at the right edge. It is also a pseudoline arrangement consisting of n x-monotone curves (from left to right), which pairwise cross exactly once.
		

References

  • Shin-ichi Minato, Counting by ZDD, Encyclopedia of Algorithms, 2014, pp. 1-6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006246. See A005118 for primitive sorting networks with exactly one comparator ("X") per column. See A060596-A060601 for higher dimensions. Cf. A006247.

Programs

  • Maple
    # classes: Wrapper for computing number of commutation classes;
    #   pass a permutation as a list
    # Returns number of commutation classes of reduced words
    # Longest element is of the form [n, n-1, ..., 1] (see Comments)
    classes:=proc(perm) option remember:
        RETURN(classesRecurse(Array(perm), 0, 1)):
    end:
    #classesRecurse: Recursive procedure for computing number of commutation classes
    classesRecurse:=proc(perm, spot, negs) local swaps, i, sums, c, doneany:
        sums:=0:
        doneany:=0:
        for i from spot to ArrayNumElems(perm)-2 do
            if perm[i+1]>perm[i+2] then
                swaps:=perm[i+1]:
                perm[i+1]:=perm[i+2]:
                perm[i+2]:=swaps:
                c:=classes(convert(perm, `list`)):
                sums:=sums+negs*c+classesRecurse(perm, i+2, -negs):
                swaps:=perm[i+1]:
                perm[i+1]:=perm[i+2]:
                perm[i+2]:=swaps:
                doneany:=1:
            end:
        end:
        if spot=0 and doneany=0 then RETURN(1):
        else RETURN(sums):
        end:
    end:
    seq(classes([seq(n+1-i, i = 1 .. n)]), n = 1 .. 9)
    # Matthew J. Samuel, Jan 23 2011, Jan 26 2011
  • Mathematica
    classes[perm_List] := classes[perm] = classesRecurse[perm, 0, 1];
    classesRecurse[perm_List, spot_, negs_] := Module[{swaps, i, Sums, c, doneany, prm = perm}, Sums = 0; doneany = 0; For[i = spot, i <= Length[prm]-2, i++, If[prm[[i+1]] > prm[[i+2]], swaps = prm[[i+1]]; prm[[i+1]] = prm[[i+2]]; prm[[i+2]] = swaps; c = classes[prm]; Sums = Sums + negs*c + classesRecurse[prm, i+2, -negs]; swaps = prm[[i+1]]; prm[[i+1]] = prm[[i+2]]; prm[[i+2]] = swaps; doneany = 1]]; If[spot == 0 && doneany == 0, Return[1], Return[Sums]]];
    a[n_] := a[n] = classes[Range[n] // Reverse];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 9}] (* Jean-François Alcover, May 09 2017, translated from Maple *)

Formula

Felsner and Valtr show that 0.1887 <= log_2(a(n))/n^2 <= 0.6571 for sufficiently large n. - Jeremy Tan, Nov 20 2017
Dumitrescu and Mandal improved the lower bound to 0.2083 <= log_2(a(n))/n^2 for sufficiently large n. - Manfred Scheucher, Sep 13 2021

Extensions

More terms from Sebastien Veigneau (sv(AT)univ-mlv.fr), Jan 15 1997
a(10) confirmed by Katsuhisa Yamanaka(yamanaka(AT)hol.is.uec.ac.jp), May 06 2009. This value was also confirmed by Takashi Horiyama of Saitama Univ.
a(11) from Katsuhisa Yamanaka(yamanaka(AT)hol.is.uec.ac.jp), May 06 2009
Reference with formula that the Maple program implements added and a(11) verified by Matthew J. Samuel, Jan 25 2011
Removed invalid comment concerning the denominators of the indicated polynomials; added a(12). - Matthew J. Samuel, Jan 30 2011
a(13) from Toshiki Saitoh, Oct 17 2011
a(14) and a(15) from Yuma Tanaka, Aug 20 2013
a(16) by Günter Rote, Dec 01 2021

A057863 a(n) = Product_{k=1..n} (2k-1)!!.

Original entry on oeis.org

1, 1, 3, 45, 4725, 4465125, 46414974375, 6272287562165625, 12714083695698776015625, 438120013555654794702228515625, 286849911214281324754704976473779296875, 3943988517696329309474874414036059896739501953125
Offset: 0

Views

Author

Keywords

Comments

a(n) is the coefficient of the closed form for BarnesG[(2n-1)/2].
a(n) is the hook product corresponding to the partition (n,n-1,...,2,1). a(n)=(n(n+1)/2)!/A005118(n+1). - Emeric Deutsch, May 21 2004
Hankel transform of A185998. - Paul Barry, Feb 08 2011
The Burchnall-Chaundy polynomials P_n(z) have leading term z^(n^2+n)/a(n). - Michael Somos, Jan 18 2023

Examples

			G.f. = 1 + x + 3*x^2 + 45*x^3 + 4725*x^4 + 4465125*x^5 + ... - _Michael Somos_, Jan 18 2023
		

Crossrefs

Programs

  • Maple
    a:= n-> mul((2*k+1)^(n-k), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Nov 28 2012
  • Mathematica
    a[n_] := Product[2^i Gamma[1/2+i]/Sqrt[Pi], {i, n}]
    Table[Product[(2*k+1)^(n-k),{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
    Table[Product[(2k-1)!!,{k,1,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
    Table[2^(n(n+1)/2-1/24) Glaisher^(3/2) Pi^(-n/2-1/4) E^(-1/8) BarnesG[n+3/2], {n, 0, 10}] (* Vladimir Reshetnikov, Nov 06 2015 *)
    Table[Sqrt[BarnesG[2*n + 2]] / (2^(n^2/2) * BarnesG[n+1] * Sqrt[Gamma[n+1]]), {n, 0, 12}] (* Vaclav Kotesovec, Apr 08 2021 *)
  • PARI
    a(n)=prod(k=0,n-1,prod(i=0,k,2*i+1))

Formula

a(n) = Product_{k=0..n} (2*k+1)^(n-k).
a(n) ~ A^(1/2) * 2^(n^2/2+n+5/24) * n^(n^2/2+n/2+1/24) / exp(3*n^2/4+n/2+1/24), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
a(n) = 2^(n*(n+1)/2-1/24) * A^(3/2) * Pi^(-n/2-1/4) * exp(-1/8) * G(n+3/2), where A is the Glaisher-Kinkelin constant, G is the Barnes G-function. - Vladimir Reshetnikov, Nov 06 2015
a(n) = sqrt(G(2*n+2)) / (2^(n^2/2) * G(n+1) * sqrt(Gamma(n+1))), where G is the Barnes G-function. - Vaclav Kotesovec, Apr 08 2021
From Michael Somos, Jan 18 2023: (Start)
a(n) = (-1)^floor((n+1)/2)*a(-1-n) for all n in Z.
a(n+1)*a(n-1) = (2*n+1)*a(n)^2 for all n in Z.
(4*n + 8)*a(n+1)^2*a(n+2)^2 = a(n)*a(n+2)^3 + a(n+1)^3*a(n+3) for all n in Z.(End)
a(n) = (1/2^(n*(n-1)/2)) * A086205(n). - Peter Bala, Feb 20 2023

Extensions

Simpler description from Benoit Cloitre, May 03 2003
Definition and programs corrected by Vaclav Kotesovec, Nov 13 2014

A003121 Strict sense ballot numbers: n candidates, k-th candidate gets k votes.

Original entry on oeis.org

1, 1, 1, 2, 12, 286, 33592, 23178480, 108995910720, 3973186258569120, 1257987096462161167200, 3830793890438041335187545600, 123051391839834932169117010215648000, 45367448380314462649742951646437285434233600, 207515126854334868747300581954534054343817468395494400
Offset: 0

Views

Author

Keywords

Comments

Also, number of even minus number of odd extensions of truncated (n-1) X n grid diagram.
Also, a(n) is the degree of the spinor variety, the complex projective variety SO(2n+1)/U(n). See Hiller's paper. - Burt Totaro (b.totaro(AT)dpmms.cam.ac.uk), Oct 29 2002
Also, number of ways of placing 1, ..., n*(n+1)/2 in a triangular array such that both rows and columns are increasing, i.e., the number of shifted standard Young tableaux of shape (n, n-1, ..., 1).
E.g., a(3) = 2 as we can write:
1 1
2 3 or 2 4
4 5 6 3 5 6
(or transpose these to have shifted tableaux). - Jon Perry, Jun 13 2003, edited by Joel B. Lewis, Aug 27 2011
Also, the number of symbolic sequences on the n symbols 0,1, ..., n-1. A symbolic sequence is a sequence that has n occurrences of 0, n-1 occurrences of 1, ..., one occurrence of n-1 and satisfies the condition that between any two consecutive occurrences of the symbol i it has exactly one occurrence of the symbol i+1. For example, the two symbolic sequences on 3 symbols are 012010 and 010210. The Shapiro-Shapiro paper shows how such sequences arise in the study of the arrangement of the real roots of a polynomial and its derivatives. There is a natural bijection between symbolic sequences and the triangular arrays described above. - Peter Bala, Jul 18 2007
a(n) also appears to be the number of chains from w_0 down to 1 in a certain suborder of the strong Bruhat order on S_n: we let v cover (ij)*v only if i,j straddle the leftmost descent in v. For n=3 and drawing that descent with a |, this order is 3|21 > 23|1 > 13|2 & 2|13 > 123, with two maximal chains. - Allen Knutson (allenk(AT)math.cornell.edu), Oct 13 2008
Number of ways to arrange the numbers 1,2,...,n(n+1)/2 in a triangle so that the rows interlace; e.g., one of the 12 triangles counted by a(4) is
6
4 8
2 5 9
1 3 7 10
- Clark Kimberling, Mar 25 2012
Also, the number of maps from n X n pipe dreams (rc-graphs) to words of adjacent transpositions in S_n that send a crossing of pipes x and y in square (i,j) to the transposition (i+j-1,i+j) swapping x and y. Taking the pictorial image of a permutation as a wiring diagram, these are maps from pipe dreams to wiring diagrams that send crossings of pipes to crossings of similarly labeled wires. - Cameron Marcott, Nov 26 2012
Number of words of length T(n)=n*(n+1)/2 with n 1's, (n-1) 2's, ..., and 1 n such that counting the numbers from left to right we always have |1| > |2| > |3| > ... > |n|. The 12 words for n=4 are 1111222334, 1111223234, 1112122334, 1112123234, 1112212334, 1112213234, 1112231234, 1121122334, 1121123234, 1121212334, 1121213234 and 1121231234. - Jon Perry, Jan 27 2013
Regarding the comment dated Mar 25 2012, it is assumed that each row is in increasing order, as in the example dated Jul 12 2012. How many row-interlacing triangles are there without that restriction? - Clark Kimberling, Dec 02 2014
Number of maximal chains of length binomial(n+1,2) in the Tamari lattice T_{n+1}. For n=2 there is 1 maximal chain of length 3 in the Tamari lattice T_3. - Alois P. Heinz, Dec 04 2015
The normalized volume of the subpolytope of the Birkhoff polytope obtained by taking the convex hull of all n X n permutation matrices corresponding to permutations that avoid the patterns 132 and 312. - Robert Davis, Dec 04 2016
From Emily Gunawan, Feb 26 2022: (Start)
The number of maximal chains in the lattice of permutations which avoid both the patterns 132 and 312, as a sublattice of the weak order on the symmetric group. For example, there are exactly 12 maximal chains in the sublattice for the weak order on the symmetric group on 5 elements.
The number of words in the commutation class of the c-sorting word of the longest permutation w_0 in the symmetric group for the Coxeter element c = s_1 s_2 s_3 s_4 s_5 ... . For example, the c-sorting word of w_0 for s_1 s_2 s_3 s_4 is the reduced word s_1 s_2 s_3 s_4 | s_1 s_2 s_3 | s_1 s_2 | s_1, and there are exactly 12 words in its commutation class.
The number of maximal chains in the lattice of c-singletons for the symmetric group, for the Coxeter element c = s_1 s_2 s_3 s_4 s_5 ... . For example, there are exactly 12 maximal chains in the lattice of c-singletons for c = s_1 s_2 s_3 s_4. (End)

Examples

			From _R. H. Hardin_, Jul 06 2012: (Start)
The a(4) = 12 ways to fill a triangle with the numbers 0 through 9:
.
     5         6         6         5
    3 7       3 7       2 7       2 7
   1 4 8     1 4 8     1 4 8     1 4 8
  0 2 6 9   0 2 5 9   0 3 5 9   0 3 6 9
.
     5         3         3         4
    3 6       2 6       2 7       3 7
   1 4 8     1 5 8     1 5 8     1 5 8
  0 2 7 9   0 4 7 9   0 4 6 9   0 2 6 9
.
     4         4         5         4
    2 6       2 7       2 6       3 6
   1 5 8     1 5 8     1 4 8     1 5 8
  0 3 7 9   0 3 6 9   0 3 7 9   0 2 7 9
.
(End)
		

References

  • G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A213457 is also closely related.

Programs

  • Maple
    f:= n-> ((n*n+n)/2)!*mul((i-1)!/(2*i-1)!, i=1..n); seq(f(n), n=0..20);
  • Mathematica
    f[n_] := (n (n + 1)/2)! Product[(i - 1)!/(2 i - 1)!, {i, n}]; Array[f, 14, 0] (* Robert G. Wilson v, May 14 2013 *)
  • PARI
    a(n)=((n*n+n)/2)!*prod(i=1,n,(i-1)!/(2*i-1)!)

Formula

a(n) = binomial(n+1, 2)!*(1!*2!*...*(n-1)!)/(1!*3!*...*(2n-1)!).
a(n) ~ sqrt(Pi) * exp(n^2/4 + n/2 + 7/24) * n^(n^2/2 + n/2 + 23/24) / (A^(1/2) * 2^(3*n^2/2 + n + 5/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014

Extensions

More terms from Michael Somos
Additional references from Frank Ruskey
Formula corrected by Eric Rowland, Jun 18 2010

A219311 Number T(n,k) of standard Young tableaux for partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 9, 0, 1, 14, 16, 0, 1, 34, 35, 0, 1, 55, 134, 0, 1, 125, 435, 0, 1, 209, 1213, 768, 0, 1, 461, 3454, 2310, 0, 1, 791, 10484, 11407, 0, 1, 1715, 28249, 44187, 0, 1, 3002, 80302, 200044, 0, 1, 6434, 231895, 680160, 292864
Offset: 0

Views

Author

Alois P. Heinz, Nov 17 2012

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=A003056(n). T(n,k) = 0 for k>A003056(n).

Examples

			A(4,2) = 3:
  +---------+  +---------+  +---------+
  | 1  2  3 |  | 1  2  4 |  | 1  3  4 |
  | 4 .-----+  | 3 .-----+  | 2 .-----+
  +---+        +---+        +---+
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1;
  0,  1,    2;
  0,  1,    3;
  0,  1,    9;
  0,  1,   14,    16;
  0,  1,   34,    35;
  0,  1,   55,   134;
  0,  1,  125,   435;
  0,  1,  209,  1213,   768;
  0,  1,  461,  3454,  2310;
  0,  1,  791, 10484, 11407;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000012 (for n>0), A047171(n) = A037952(n)-1, A219316, A219317, A219318, A219319, A219320, A219321, A219322, A219323.
Row sums give: A218293.
Row lengths are 1 + A003056(n).
T(A000217(k),k) = A005118(k+1).

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, k, l) `if`(n=0, h(l), `if`(n>k*(i-(k-1)/2), 0,
          g(n, i-1, min(k, i-1), l)+`if`(i>n, 0, g(n-i, i-1, k-1, [l[], i]))))
        end:
    A:= proc(n, k) option remember; `if`(k<0, 0, g(n, n, k, [])) end:
    T:= (n, k)-> A(n, k) -A(n, k-1):
    seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ];
    g[n_, i_, k_, l_] := If[n == 0, h[l], If[n > k*(i-(k-1)/2), 0, g[n, i-1, Min[k, i-1], l] + If[i > n, 0, g[n-i, i-1, k-1, Append[l, i]]]]];
    a[n_, k_] := a[n, k] = If[k < 0, 0, g[n, n, k, {}]];
    t[n_, k_] := a[n, k] - a[n, k-1];
    Table[Table[t[n, k], {k, 0, Floor[(Sqrt[1+8*n]-1)/2]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

A219274 Number T(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 5, 16, 1, 4, 9, 49, 70, 168, 768, 1, 5, 14, 92, 204, 738, 3300, 7887, 15015, 48048, 292864, 1, 6, 20, 153, 405, 1815, 9460, 28743, 101673, 333905, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 1, 7, 27, 235, 715, 3630, 21307
Offset: 0

Views

Author

Alois P. Heinz, Nov 17 2012

Keywords

Comments

T(n,k) is defined for n,k >= 0. T(n,k) = 0 iff n k*(k+1)/2 = A000217(k). The triangle contains only the nonzero terms.

Examples

			T(3,2) = 2:
+------+  +------+
| 1  2 |  | 1  3 |
| 3 .--+  | 2 .--+
+---+     +---+
Triangle T(n,k) begins:
1;
.  1;
.     1;
.     2,  1;
.         3,   1;
.         5,   4,   1;
.        16,   9,   5,   1;
.             49,  14,   6,   1;
.             70,  92,  20,   7,  1;
.            168, 204, 153,  27,  8, 1;
.            768, 738, 405, 235, 35, 9, 1;
		

Crossrefs

Column heights are A000124(k-1) for k>0.
Column sums give: A219275.
Row sums give: A218293.
Diagonal and lower diagonals give: A000012, A000027 (for n>1), A000096(n-1) (for n>2).
Leftmost nonzero elements give A219339.
Column of leftmost nonzero element is A002024(n) for n>0.
Triangle read by rows reversed gives: A219356.
T(A000217(n),n) = A005118(n+1).

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) local s; s:=i*(i+1)/2;
          `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
           g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
        end:
    T:= (n, k)-> `if`(k>n, 0, g(n-k, k-1, [k])):
    seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..7);
  • Mathematica
    h[l_] := Module[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := Module[{s = i(i + 1)/2}, If[n == s, h[Join[l, Table[i - j, {j, 0, i - 1}]]], If[n > s, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Append[l, i]]]]]];
    T[n_, k_] := If[k > n, 0, g[n - k, k - 1, {k}]];
    Table[Table[T[n, k], {n, k, k(k + 1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Sep 01 2023, after Alois P. Heinz *)

Formula

T(n,k) = A219272(n,k) - A219272(n,k-1) for k>0.

A143672 Number of chains (totally ordered subsets) in the poset of Dyck paths ordered by inclusion.

Original entry on oeis.org

1, 2, 4, 24, 816, 239968, 808814912, 38764383658368, 31491961129357837056, 503091371552266970507912704, 179763631086276515267399940231898112, 1609791936564515363272979180683040232936253440
Offset: 0

Views

Author

Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Aug 28 2008

Keywords

Comments

For each n, each vertex in the Hasse diagram of the poset corresponds to a Dyck path of size n. The chain polynomial, C(P,t)=(1 + sum_k(c_k*t^(k+1)), gives the breakdown of this sequence by number of vertices in the chain. The 1 in front of the sum in this equation denotes the empty chain. The coefficient, c_k, gives the number of chains of length k and the exponent, (k+1), indicates the number of vertices in the chain. Here are the chain polynomials corresponding to this sequence:
n=0 1
n=1 1 + t
n=2 1 + 2t + t^2
n=3 1 + 5t + 9t^2 + 7t^3 + 2t^4
n=4 1 + 14t + 70t^2 + 176 t^3+249t^4 + 202t^5 + 88 t^6 + 16 t^7
n=5 1 + 42t + 552t^2 + 3573t^3 + 13609t^4+ 33260 t^5 + 54430t^6 + 60517t^7 + 45248t^8 + 21824t^9 + 6144t^(10) + 768t^(11)
Note that for each n, the coefficient of t is equal to the Catalan number, C_n. It is well-known that the number of Dyck paths in D_n is given by C_n (A000108). The coefficient in front of the largest power of t gives the number of maximal (and also maximum) chains (A005118).

Examples

			a(3) = 24 since in D_3 there are 2 chains of length 3 (i.e., on 4 vertices in the Hasse diagram), 7 chains of length 2 (on 3 vertices), 9 chains of length 1 (on 2 vertices), 5 chains of length 0 (on 1 vertex) and the empty chain: 2 + 7 + 9 + 5 + 1 = 24 chains.
		

References

  • R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.

Crossrefs

Cf. A143673, A143674, A193629. Chains on one vertex: A000108. Number of maximal chains: A005118.

Programs

  • Maple
    d:= proc(x, y, l) option remember;
          `if`(x=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)])
        end:
    le:= proc(l1, l2) local i;
           for i to nops(l1) do if l1[i]>l2[i] then return false fi od;
           true
         end:
    a:= proc(n) option remember; local l, m, g;
          if n=0 then return 1 fi;
          l:= d(n, n, []); m:= nops(l);
          g:= proc(t) option remember;
                1 +add(`if`(le(l[d], l[t]), g(d), 0), d=1..t-1);
              end;
          1+ add(g(h), h=1..m)
        end:
    seq(a(n), n=0..7);  # Alois P. Heinz, Jul 26 2011

Formula

a(n) = 1 + Sum_{i,j in {1..C(n)}} (2*delta - zeta)^(-1)[i,j] where delta is the identity matrix and the zeta matrix is defined: zeta[a,b] = 1 if a<=b in D_n and 0 otherwise.

Extensions

a(6)-a(11), from Alois P. Heinz, Jul 26 2011, Aug 01 2011

A219272 Number A(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part <= k; triangle A(n,k), k>=0, 0<=n<=k*(k+1)/2, read by columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 5, 16, 1, 1, 1, 3, 4, 9, 25, 49, 70, 168, 768, 1, 1, 1, 3, 4, 10, 30, 63, 162, 372, 1506, 3300, 7887, 15015, 48048, 292864, 1, 1, 1, 3, 4, 10, 31, 69, 182, 525, 1911, 5115, 17347, 43758, 149721, 626769, 1946516, 4934930
Offset: 0

Views

Author

Alois P. Heinz, Nov 17 2012

Keywords

Comments

A(n,k) is defined for n,k >= 0. A(n,k) = 0 iff n > k*(k+1)/2 = A000217(k). The triangle contains only the nonzero terms. A(n,k) = A(n,n) for k>=n.

Examples

			A(3,2) = 2:
+------+  +------+
| 1  2 |  | 1  3 |
| 3 .--+  | 2 .--+
+---+     +---+
A(3,3) = 3:
+------+  +------+  +---------+
| 1  2 |  | 1  3 |  | 1  2  3 |
| 3 .--+  | 2 .--+  +---------+
+---+     +---+
Triangle A(n,k) begins:
1,  1,  1,  1,   1,    1,    1,    1,    1, ...
.   1,  1,  1,   1,    1,    1,    1,    1, ...
.       1,  1,   1,    1,    1,    1,    1, ...
.       2,  3,   3,    3,    3,    3,    3, ...
.           3,   4,    4,    4,    4,    4, ...
.           5,   9,   10,   10,   10,   10, ...
.          16,  25,   30,   31,   31,   31, ...
.               49,   63,   69,   70,   70, ...
.               70,  162,  182,  189,  190, ...
		

Crossrefs

Column heights are A000124.
Column sums give: A219273.
Diagonal gives: A218293.
Leftmost nonzero elements give A219339.
Column of leftmost nonzero element is A002024(n) for n>0.
T(A000217(n),n) = A005118(n+1).

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) local s; s:=i*(i+1)/2;
          `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
           g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
        end:
    A:= (n, k)-> g(n, k, []):
    seq(seq(A(n, k), n=0..k*(k+1)/2), k=0..7);
  • Mathematica
    h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = With[{s=i*(i+1)/2}, If[n==s, h[Join[l, Table[ i-j, {j, 0, i-1}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]];
    A[n_, k_] := g[n, k, {}];
    Table[Table[A[n, k], {n, 0, k*(k+1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} A219274(n,i).

A219339 Number of standard Young tableaux for partitions of n into distinct parts with largest part floor(sqrt(2*n)+1/2).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 16, 49, 70, 168, 768, 3300, 7887, 15015, 48048, 292864, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 9732668946, 32773404950, 97848532782, 344699731090, 1020872973120, 5091106775040, 48608795688960, 586393249199550
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2012

Keywords

Comments

a(n) is the leftmost nonzero element in row n of A219272, A219274.
Floor(sqrt(2*n)+1/2) = A002024(n) for n>0. There are no partitions of n into distinct parts with a smaller largest part.

Examples

			For n=5, we have floor(sqrt(2*n)+1/2) = 3, and a(5) = 5, because there are 5 standard Young tableaux for partitions of 5 into distinct parts with largest part 3:
+---------+  +---------+  +---------+  +---------+  +---------+
| 1  2  3 |  | 1  2  4 |  | 1  2  5 |  | 1  3  4 |  | 1  3  5 |
| 4  5 .--+  | 3  5 .--+  | 3  4 .--+  | 2  5 .--+  | 2  4 .--+
+------+     +------+     +------+     +------+     +------+
		

Crossrefs

Cf. A005118 (subsequence), A219347.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) local s; s:=i*(i+1)/2;
          `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
           g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
        end:
    a:= n-> g(n, floor(sqrt(2*n)+1/2), []):
    seq(a(n), n=0..30);
  • Mathematica
    h[l_] := (n = Length[l]; Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]); g[n_, i_, l_] := g[n, i, l] = (s = i*(i+1)/2; If[n==s, h[Join[l, Table[i-j, {j, 0, i-1}]] ], If[n>s, 0, g[n, i-1, l]+If[i>n, 0, g[n-i, i-1, Append[l, i]]]]] ); a[n_] := g[n, Floor[Sqrt[2*n]+1/2], {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)

Formula

a(n) = A219272(n,floor(sqrt(2*n)+1/2)) = A219274(n,floor(sqrt(2*n)+1/2)).

A018241 Number of simple allowable sequences on 1..n.

Original entry on oeis.org

1, 1, 2, 32, 4608, 7028736, 132089118720, 34998332896051200, 147462169661142781132800, 11008782516353752266715850342400, 16061608070479103314001351327405309952000, 500842967990688435516159987675099451681186775040000
Offset: 1

Views

Author

Keywords

References

  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
  • G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.

Crossrefs

Programs

  • Maple
    A018241 := proc(n) local i; (n-2)!*binomial(n,2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end;
  • Mathematica
    a[n_] := (n*(n-1)/2)!*(n-2)! / Product[ (2i+1)^(n-i-1), {i, 0, n-2}]; a[1] = 1; Table[ a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 25 2012 *)

Formula

a(n) = (n-2)!*C(n,2)! / (1^{n-1} * 3^{n-2} * ... * (2n-3)^1).
a(n) ~ Pi * exp(n^2/4 - 3*n/2 + 7/24) * n^(n^2/2 + n/2 - 13/24) / (A^(1/2) * 2^(n^2 - n/2 - 19/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014

A193536 Triangle T(n,k), n>=0, 0<=k<=C(n,2), read by rows: T(n,k) = number of k-length saturated chains in the poset of Dyck paths of semilength n ordered by inclusion.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 4, 2, 14, 21, 30, 38, 40, 32, 16, 42, 84, 168, 322, 578, 952, 1408, 1808, 1920, 1536, 768, 132, 330, 840, 2112, 5168, 12172, 27352, 58126, 115636, 212762, 356352, 532224, 687104, 732160, 585728, 292864, 429, 1287, 3960
Offset: 0

Views

Author

Alois P. Heinz, Jul 29 2011

Keywords

Examples

			Poset of Dyck paths of semilength n=3:
.
.      A       A:/\      B:
.      |        /  \      /\/\
.      B       /    \    /    \
.     / \
.    C   D     C:        D:        E:
.     \ /         /\      /\
.      E       /\/  \    /  \/\    /\/\/\
.
Saturated chains of length k=0: A, B, C, D, E (5); k=1: A-B, B-C, B-D, C-E, D-E (5); k=2: A-B-C, A-B-D, B-C-E, B-D-E (4), k=3: A-B-C-E, A-B-D-E (2) => [5,5,4,2].
Triangle begins:
    1;
    1;
    2,   1;
    5,   5,   4,    2;
   14,  21,  30,   38,   40,    32,    16;
   42,  84, 168,  322,  578,   952,  1408,  1808,   1920,   1536,    768;
  132, 330, 840, 2112, 5168, 12172, 27352, 58126, 115636, 212762, 356352, ...
		

Crossrefs

Row sums give: A166860. Columns k=0,1 give: A000108, A002054(n-1). Last elements of rows give: A005118. Row lengths give: A000124(n-1).

Programs

  • Maple
    d:= proc(x, y, l) option remember;
          `if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)])
        end:
    T:= proc(n) option remember; local g, r, j;
          g:= proc(l) option remember; local r, i;
                r:= [1];
                for i to n-1 do if l[i]>i and (i=1 or l[i-1]x+y, r, [0, g(subsop(i=l[i]-1, l))[]], 0)
                fi od; r
              end;
          r:= [];
          for j in d(n, n, []) do
            r:= zip((x, y)->x+y, r, g(j), 0)
          od; r[]
        end:
    seq(T(n), n=0..7);
  • Mathematica
    zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; d[x_, y_, l_] := d[x, y, l] = If[x <= 1, {Prepend[l, y]}, Flatten[t = Table [d[x-1, i, Prepend[l, y]], {i, x-1, y}], 1]];
    T[n_] := T[n] = Module[{g, r0}, g[l_] := g[l] = Module[{r, i}, r = {1}; For[i = 1, i <= n-1 , i++, If [l[[i]]>i && (i == 1 || l[[i-1]] < l[[i]]), r = zip[r, Join[{0}, g[ReplacePart[l, i -> l[[i]]-1]]]]]]; r]; r0 = {}; Do[r0 = zip[r0, g[j]], {j, d[n, n, {}]}]; r0]; Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Feb 13 2017, translated from Maple *)
Showing 1-10 of 18 results. Next