A060595
Number of tilings of the 3-dimensional zonotope constructed from D vectors.
Original entry on oeis.org
1, 2, 10, 148, 7686, 1681104, 1881850464, 13227777493060
Offset: 3
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
Z(3,3) is simply a cube and the only possible tile is Z(3,3) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999
- V. Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- Helena Bergold, Stefan Felsner, and Manfred Scheucher, Extendability of higher dimensional signotopes, Proc. 38th Eur. Wksp. Comp. Geom. (EuroCG), 2022. See also arXiv:2303.04079 [math.CO], 2023.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- J. A. Olarte and F. Santos, Hypersimplicial subdivisions, arXiv:1906.05764 [math.CO], 2019.
- Manfred Scheucher, C program for enumeration
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
A006248
Number of projective pseudo order types: simple arrangements of pseudo-lines in the projective plane.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 11, 135, 4382, 312356, 41848591, 10320613331
Offset: 1
- J. Bokowski, personal communication.
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Bokowski & N. J. A. Sloane, Emails, June 1994
- F. Cortés Kühnast, J. Dallant, S. Felsner, and M. Scheucher, An Improved Lower Bound on the Number of Pseudoline Arrangements
- Stefan Felsner and Jacob E. Goodman, Pseudoline Arrangements, Chapter 5 of Handbook of Discrete and Computational Geometry, CRC Press, 2017, see Table 5.6.1. [Specific reference for this sequence] - _N. J. A. Sloane_, Nov 14 2023
- S. Felsner and J. E. Goodman, Pseudoline Arrangements. In: Toth, O'Rourke, Goodman (eds.) Handbook of Discrete and Computational Geometry, 3rd edn. CRC Press, 2018.
- J. Ferté, V. Pilaud and M. Pocchiola, On the number of simple arrangements of five double pseudolines, arXiv:1009.1575 [cs.CG], 2010; Discrete Comput. Geom. 45 (2011), 279-302.
- Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.
- L. Finschi, Homepage of Oriented Matroids
- L. Finschi and K. Fukuda, Complete combinatorial generation of small point set configurations and hyperplane arrangements, pp. 97-100 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
- Komei Fukuda, Hiroyuki Miyata, and Sonoko Moriyama, Complete Enumeration of Small Realizable Oriented Matroids, arXiv:1204.0645 [math.CO], 2012; Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. - From _N. J. A. Sloane_, Feb 16 2013
- Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry, CRC Press, 2017, see Table 5.6.1. [General reference for 2017 edition of the Handbook] - _N. J. A. Sloane_, Nov 14 2023
- D. E. Knuth, Axioms and Hulls, Lect. Notes Comp. Sci., Vol. 606, Springer-Verlag, Berlin, Heidelberg, 1992, p.35, entry E_n.
- Index entries for sequences related to sorting
a(11) from Franz Aurenhammer (auren(AT)igi.tu-graz.ac.at), Feb 05 2002
A006247
Number of simple arrangements of n pseudolines in the projective plane with a marked cell. Number of Euclidean pseudo-order types: nondegenerate abstract order types of configurations of n points in the plane.
Original entry on oeis.org
1, 1, 1, 2, 3, 16, 135, 3315, 158830, 14320182, 2343203071, 691470685682, 366477801792538
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- O. Aichholzer, Order Types for Small Point Sets
- O. Aichholzer, F. Aurenhammer and H. Krasser, Enumerating order types for small point sets with applications, In Proc. 17th Ann. ACM Symp. Computational Geometry, pages 11-18, Medford, Massachusetts, USA, 2001. [Computes a(10)]
- Stefan Felsner and Jacob E. Goodman, Pseudoline Arrangements, Chapter 5 of Handbook of Discrete and Computational Geometry, CRC Press, 2017, see Table 5.6.1. [Specific reference for this sequence] - _N. J. A. Sloane_, Nov 14 2023
- J. Ferté, V. Pilaud and M. Pocchiola, On the number of simple arrangements of five double pseudolines, arXiv:1009.1575 [cs.CG], 2010; Discrete Comput. Geom. 45 (2011), 279-302.
- Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.
- Lukas Finschi, Homepage of Oriented Matroids
- L. Finschi and K. Fukuda, Complete combinatorial generation of small point set configurations and hyperplane arrangements, pp. 97-100 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
- Henry Förster, Philipp Kindermann, Tillmann Miltzow, Irene Parada, Soeren Terziadis, and Birgit Vogtenhuber, Geometric Thickness of Multigraphs is (exists in reals)-complete, arXiv:2312.05010 [cs.CG], 2023.
- Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry [alternative link], CRC Press, 2017, see Table 5.6.1. [General reference for 2017 edition of the Handbook] - _N. J. A. Sloane_, Nov 14 2023
- J. E. Goodman and R. Pollack, Semispaces of configurations, cell complexes of arrangements, J. Combin. Theory, A 37 (1984), 257-293.
- D. E. Knuth, Axioms and hulls, Lect. Notes Comp. Sci., Vol. 606.
- Alexander Pilz and Emo Welzl, Order on order types, Discrete & Computational Geometry, 59 (No. 4, 2015), 886-922.
- Manfred Scheucher, Hendrik Schrezenmaier, and Raphael Steiner, A Note On Universal Point Sets for Planar Graphs, arXiv:1811.06482 [math.CO], 2018.
a(11) from Franz Aurenhammer (auren(AT)igi.tu-graz.ac.at), Feb 05 2002
A060637
Triangle T(n,k) (0 <= k <= n) giving number of tilings of the k-dimensional zonotope constructed from n vectors.
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 8, 6, 2, 1, 16, 24, 8, 2, 1, 32, 120, 62, 10, 2, 1, 64, 720, 908, 148, 12, 2, 1, 128, 5040, 24698, 7686, 338, 14, 2, 1, 256, 40320, 1232944
Offset: 0
Triangle T(n,k) begins:
1;
2, 1;
4, 2, 1;
8, 6, 2, 1;
16, 24, 8, 2, 1;
32, 120, 62, 10, 2, 1;
64, 720, 908, 148, 12, 2, 1;
128, 5040, 24698, 7686, 338, 14, 2, 1;
...
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
A060602
Number of tilings of the d-dimensional zonotope constructed from d+3 vectors.
Original entry on oeis.org
8, 24, 62, 148, 338, 752, 1646, 3564, 7658, 16360, 34790, 73700, 155618, 327648, 688094, 1441756, 3014618, 6291416, 13107158, 27262932, 56623058, 117440464, 243269582, 503316428, 1040187338, 2147483592, 4429184966
Offset: 0
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
For any Z(D,d), the number of codimension 0 tilings is always 1, with codimension 1 it is 2, with codimension 2 it is 2.D.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
-
LinearRecurrence[{6,-13,12,-4},{8,24,62,148},30] (* Harvey P. Dale, Oct 13 2023 *)
-
print([2**(n + 1)*(n + 7) - 2*n - 6 for n in range(100)])
A086903
a(n) = 8*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 8.
Original entry on oeis.org
2, 8, 62, 488, 3842, 30248, 238142, 1874888, 14760962, 116212808, 914941502, 7203319208, 56711612162, 446489578088, 3515205012542, 27675150522248, 217885999165442, 1715412842801288, 13505416743244862, 106327921103157608
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003
a(4) = 3842 = 8*a(3) - a(2) = 8*488 - 62 = (4+sqrt(15))^4 + (4-sqrt(15))^4 = 3841.9997397 + 0.0002603 = 3842.
-
I:=[2,8]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 15 2014
-
a[0] = 2; a[1] = 8; a[n_] := 8a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
CoefficientList[Series[(2 - 8 x)/(1 - 8 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 15 2014 *)
LinearRecurrence[{8,-1},{2,8},30] (* Harvey P. Dale, Jan 18 2015 *)
-
[lucas_number2(n,8,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
A145662
a(n) = numerator of polynomial of genus 1 and level n for m = 5 = A[1,n](5).
Original entry on oeis.org
0, 5, 55, 835, 8365, 41837, 209195, 7321885, 73218955, 1098284605, 5491423277, 302028282755, 1510141416085, 98159192073245, 490795960391965, 2453979801983849, 24539798019883535, 2085882831690821195
Offset: 1
-
A145662 := proc(n) add( 5^(n-d)/d,d=1..n-1) ; numer(%) ; end proc: # R. J. Mathar, Feb 01 2011
-
m = 5; aa = {}; Do[k = 0; Do[k = k + m^(r - d)/d, {d, 1, r - 1}]; AppendTo[aa, Numerator[k]], {r, 1, 30}]; aa
A006246
Number of simple arrangements of pseudolines in the projective plane with an oriented marked cell; number of oriented abstract order types of n points (distinguishing mirror-symmetric copies).
Original entry on oeis.org
1, 1, 1, 2, 3, 20, 242, 6405, 316835, 28627261, 4686329954, 1382939012729, 732955581630129
Offset: 1
- M. H. Klin et al., "2D-configurations and clique-cyclic orientations of the graphs L(K_p)", pages 149-162 of Reports in Molecular Theory, Vol. 1, 1990.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. E. Knuth, Axioms and Hulls, Lect. Notes Comp. Sci., Vol. 606, Springer-Verlag, Berlin, Heidelberg, 1992, p.35, entry C_n.
- Günter Rote, NumPSLA — An experimental research tool for pseudoline arrangements and order types, arXiv:2503.02336 [math.CO], 2025. See Table 5 on p. 18:17, last column.
- Index entries for sequences related to sorting
Cf.
A006245. See
A006247 for abstract order types when mirror-symmetric copies are identified.
A060596
Number of tilings of the 4-dimensional zonotope constructed from D vectors.
Original entry on oeis.org
1, 2, 12, 338, 78032, 295118262, 42185916295296
Offset: 4
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- Manfred Scheucher, C program for enumeration.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
A060601
Number of tilings of the 9-dimensional zonotope constructed from D vectors.
Original entry on oeis.org
1, 2, 22, 16360, 613773463394
Offset: 9
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- Helena Bergold, Stefan Felsner, and Manfred Scheucher, Extendability of higher dimensional signotopes, Proc. 38th Eur. Wksp. Comp. Geom. (EuroCG), 2022. See also arXiv:2303.04079 [math.CO], 2023.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
Showing 1-10 of 22 results.
Comments