A219356
Triangle read by rows: A219274 with rows reversed.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 1, 4, 5, 1, 5, 9, 16, 1, 6, 14, 49, 1, 7, 20, 92, 70, 1, 8, 27, 153, 204, 168, 1, 9, 35, 235, 405, 738, 768, 1, 10, 44, 341, 715, 1815, 3300, 1, 11, 54, 474, 1166, 3630, 9460, 7887, 1, 12, 65, 637, 1794, 6578, 21307, 28743, 15015
Offset: 0
A219274 with rows reversed begins:
1;
1;
1;
1, 2;
1, 3;
1, 4, 5;
1, 5, 9, 16;
1, 6, 14, 49;
1, 7, 20, 92, 70;
1, 8, 27, 153, 204, 168;
1, 9, 35, 235, 405, 738, 768;
...
Last elements of rows give:
A219339.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
T:= (n, k)-> `if`(k>n, 0, g(n-k, k-1, [k])):
seq(seq(T(n, n-k), k=0..(n-floor(sqrt(2*n)+1/2))), n=0..14);
A005118
Number of simple allowable sequences on 1..n containing the permutation 12...n.
Original entry on oeis.org
1, 1, 1, 2, 16, 768, 292864, 1100742656, 48608795688960, 29258366996258488320, 273035280663535522487992320, 44261486084874072183645699204710400, 138018895500079485095943559213817088756940800
Offset: 0
- D. B. A. Epstein with J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson and W. P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992. xii+330 pp.
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..40
- Omer Angel, Alexander E. Holroyd, Dan Romik, and Balint Virag, Random Sorting Networks, arXiv preprint arXiv:0609538 [math.PR], 2006.
- Joerg Arndt, The a(4)=16 Young tableaux of shape [3, 2, 1].
- Sara C. Billey and Peter R. W. McNamara, The contributions of Stanley to the fabric of symmetric and quasisymmetric functions, arXiv preprint, 2015.
- Tobias Boege, Alessio D'Alì, Thomas Kahle, Bernd Sturmfels, The Geometry of Gaussoids, arXiv:1710.07175 [math.CO], 2017.
- R. Davis and B. Sagan, Pattern-Avoiding Polytopes, 2016
- FindStat - Combinatorial Statistic Finder, The number of ways to write a permutation as a minimal length product of simple transpositions
- M. J. Hay, J. Schiff, and N. J. Fisch, Maximal energy extraction under discrete diffusive exchange, arXiv preprint arXiv:1508.03499 [physics.plasm-ph], 2015.
- H. Hiller, Combinatorics and intersection of Schubert varieties, Comment. Math. Helv. 57 (1982), 41-59.
- D. Kim, Finding k Shortest Paths in Cayley Graphs of Finite Groups, Graphs and Combinatorics 40, 120 (2024). See Formula at p. 13.
- G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy]
- Joshua Maglione and Christopher Voll, Hall-Littlewood polynomials, affine Schubert series, and lattice enumeration, arXiv:2410.08075 [math.CO], 2024. See pp. 34, 39.
- R. P. Stanley, A combinatorial miscellany
- R. P. Stanley, Ordering events in Minkowski space, arXiv:math/0501256 [math.CO], 2005.
- R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5 (1984), 359-372.
-
A005118 := proc(n) local i; binomial(n,2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end;
-
Table[Binomial[n, 2]!/Product[(2*i + 1)^(n - i - 1), {i, 0, n - 2}], {n, 0, 10}] (* T. D. Noe, May 29 2012 *)
A218293
Number of standard Young tableaux with shapes corresponding to partitions into distinct parts.
Original entry on oeis.org
1, 1, 1, 3, 4, 10, 31, 70, 190, 561, 2191, 6226, 22683, 74152, 283349, 1211354, 4572672, 18844177, 77585825, 327472752, 1418056071, 7083303437, 31251988918, 153456264178, 723293387594, 3596567095155, 17360616601051, 89955643932801, 486526881887485, 2551613423040841, 14029592127656040, 76756835252971657, 428044848852530252
Offset: 0
Cf.
A000085 (standard Young tableaux for all shapes).
Cf.
A225121 (tableaux with shapes corresponding to partitions into distinct parts with minimal difference 2).
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
a:= n-> g(n, n, []):
seq(a(n), n=0..40); # Alois P. Heinz, Nov 08 2012
-
h[l_List] := Module[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j + Sum[ If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := Module[{s=i*(i+1)/2}, If[n == s, h[Join[l, Table[i-j, {j, 0, i-1}]]], If[n > s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
A219311
Number T(n,k) of standard Young tableaux for partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 9, 0, 1, 14, 16, 0, 1, 34, 35, 0, 1, 55, 134, 0, 1, 125, 435, 0, 1, 209, 1213, 768, 0, 1, 461, 3454, 2310, 0, 1, 791, 10484, 11407, 0, 1, 1715, 28249, 44187, 0, 1, 3002, 80302, 200044, 0, 1, 6434, 231895, 680160, 292864
Offset: 0
A(4,2) = 3:
+---------+ +---------+ +---------+
| 1 2 3 | | 1 2 4 | | 1 3 4 |
| 4 .-----+ | 3 .-----+ | 2 .-----+
+---+ +---+ +---+
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 2;
0, 1, 3;
0, 1, 9;
0, 1, 14, 16;
0, 1, 34, 35;
0, 1, 55, 134;
0, 1, 125, 435;
0, 1, 209, 1213, 768;
0, 1, 461, 3454, 2310;
0, 1, 791, 10484, 11407;
...
Columns k=0-10 give:
A000007,
A000012 (for n>0),
A047171(n) =
A037952(n)-1,
A219316,
A219317,
A219318,
A219319,
A219320,
A219321,
A219322,
A219323.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, k, l) `if`(n=0, h(l), `if`(n>k*(i-(k-1)/2), 0,
g(n, i-1, min(k, i-1), l)+`if`(i>n, 0, g(n-i, i-1, k-1, [l[], i]))))
end:
A:= proc(n, k) option remember; `if`(k<0, 0, g(n, n, k, [])) end:
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20);
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ];
g[n_, i_, k_, l_] := If[n == 0, h[l], If[n > k*(i-(k-1)/2), 0, g[n, i-1, Min[k, i-1], l] + If[i > n, 0, g[n-i, i-1, k-1, Append[l, i]]]]];
a[n_, k_] := a[n, k] = If[k < 0, 0, g[n, n, k, {}]];
t[n_, k_] := a[n, k] - a[n, k-1];
Table[Table[t[n, k], {k, 0, Floor[(Sqrt[1+8*n]-1)/2]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
A219272
Number A(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part <= k; triangle A(n,k), k>=0, 0<=n<=k*(k+1)/2, read by columns.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 5, 16, 1, 1, 1, 3, 4, 9, 25, 49, 70, 168, 768, 1, 1, 1, 3, 4, 10, 30, 63, 162, 372, 1506, 3300, 7887, 15015, 48048, 292864, 1, 1, 1, 3, 4, 10, 31, 69, 182, 525, 1911, 5115, 17347, 43758, 149721, 626769, 1946516, 4934930
Offset: 0
A(3,2) = 2:
+------+ +------+
| 1 2 | | 1 3 |
| 3 .--+ | 2 .--+
+---+ +---+
A(3,3) = 3:
+------+ +------+ +---------+
| 1 2 | | 1 3 | | 1 2 3 |
| 3 .--+ | 2 .--+ +---------+
+---+ +---+
Triangle A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
. 1, 1, 1, 1, 1, 1, 1, 1, ...
. 1, 1, 1, 1, 1, 1, 1, ...
. 2, 3, 3, 3, 3, 3, 3, ...
. 3, 4, 4, 4, 4, 4, ...
. 5, 9, 10, 10, 10, 10, ...
. 16, 25, 30, 31, 31, 31, ...
. 49, 63, 69, 70, 70, ...
. 70, 162, 182, 189, 190, ...
Leftmost nonzero elements give
A219339.
Column of leftmost nonzero element is
A002024(n) for n>0.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, k), n=0..k*(k+1)/2), k=0..7);
-
h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = With[{s=i*(i+1)/2}, If[n==s, h[Join[l, Table[ i-j, {j, 0, i-1}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]];
A[n_, k_] := g[n, k, {}];
Table[Table[A[n, k], {n, 0, k*(k+1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz *)
A219339
Number of standard Young tableaux for partitions of n into distinct parts with largest part floor(sqrt(2*n)+1/2).
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 16, 49, 70, 168, 768, 3300, 7887, 15015, 48048, 292864, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 9732668946, 32773404950, 97848532782, 344699731090, 1020872973120, 5091106775040, 48608795688960, 586393249199550
Offset: 0
For n=5, we have floor(sqrt(2*n)+1/2) = 3, and a(5) = 5, because there are 5 standard Young tableaux for partitions of 5 into distinct parts with largest part 3:
+---------+ +---------+ +---------+ +---------+ +---------+
| 1 2 3 | | 1 2 4 | | 1 2 5 | | 1 3 4 | | 1 3 5 |
| 4 5 .--+ | 3 5 .--+ | 3 4 .--+ | 2 5 .--+ | 2 4 .--+
+------+ +------+ +------+ +------+ +------+
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
a:= n-> g(n, floor(sqrt(2*n)+1/2), []):
seq(a(n), n=0..30);
-
h[l_] := (n = Length[l]; Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]); g[n_, i_, l_] := g[n, i, l] = (s = i*(i+1)/2; If[n==s, h[Join[l, Table[i-j, {j, 0, i-1}]] ], If[n>s, 0, g[n, i-1, l]+If[i>n, 0, g[n-i, i-1, Append[l, i]]]]] ); a[n_] := g[n, Floor[Sqrt[2*n]+1/2], {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)
A219275
Number of standard Young tableaux for partitions of nonnegative integers into distinct parts with largest part n.
Original entry on oeis.org
1, 1, 3, 25, 1069, 368168, 1299366501, 55208013380403, 32401197537296758130, 297072961835477978342245712, 47538199827835784548062928051198402, 146779873623344672821145371965795071455181183, 9581411392319396646028223743176779937161862866453789852
Offset: 0
a(2) = 3:
+------+ +------+ +------+
| 1 2 | | 1 3 | | 1 2 |
| 3 .--+ | 2 .--+ +------+
+---+ +---+
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
b:= (n, l)-> `if`(n<1, h(l), b(n-1, l) +b(n-1, [l[], n])):
a:= n-> `if`(n=0, 1, b(n-1, [n])):
seq(a(n), n=0..12);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[ Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
b[n_, l_] := If[n < 1, h[l], b[n - 1, l] + b[n - 1, Append[l, n]]];
a[n_] := If[n == 0, 1, b[n - 1, {n}]];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 02 2022, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments