A219311
Number T(n,k) of standard Young tableaux for partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 9, 0, 1, 14, 16, 0, 1, 34, 35, 0, 1, 55, 134, 0, 1, 125, 435, 0, 1, 209, 1213, 768, 0, 1, 461, 3454, 2310, 0, 1, 791, 10484, 11407, 0, 1, 1715, 28249, 44187, 0, 1, 3002, 80302, 200044, 0, 1, 6434, 231895, 680160, 292864
Offset: 0
A(4,2) = 3:
+---------+ +---------+ +---------+
| 1 2 3 | | 1 2 4 | | 1 3 4 |
| 4 .-----+ | 3 .-----+ | 2 .-----+
+---+ +---+ +---+
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 2;
0, 1, 3;
0, 1, 9;
0, 1, 14, 16;
0, 1, 34, 35;
0, 1, 55, 134;
0, 1, 125, 435;
0, 1, 209, 1213, 768;
0, 1, 461, 3454, 2310;
0, 1, 791, 10484, 11407;
...
Columns k=0-10 give:
A000007,
A000012 (for n>0),
A047171(n) =
A037952(n)-1,
A219316,
A219317,
A219318,
A219319,
A219320,
A219321,
A219322,
A219323.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, k, l) `if`(n=0, h(l), `if`(n>k*(i-(k-1)/2), 0,
g(n, i-1, min(k, i-1), l)+`if`(i>n, 0, g(n-i, i-1, k-1, [l[], i]))))
end:
A:= proc(n, k) option remember; `if`(k<0, 0, g(n, n, k, [])) end:
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20);
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ];
g[n_, i_, k_, l_] := If[n == 0, h[l], If[n > k*(i-(k-1)/2), 0, g[n, i-1, Min[k, i-1], l] + If[i > n, 0, g[n-i, i-1, k-1, Append[l, i]]]]];
a[n_, k_] := a[n, k] = If[k < 0, 0, g[n, n, k, {}]];
t[n_, k_] := a[n, k] - a[n, k-1];
Table[Table[t[n, k], {k, 0, Floor[(Sqrt[1+8*n]-1)/2]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
A219274
Number T(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 5, 16, 1, 4, 9, 49, 70, 168, 768, 1, 5, 14, 92, 204, 738, 3300, 7887, 15015, 48048, 292864, 1, 6, 20, 153, 405, 1815, 9460, 28743, 101673, 333905, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 1, 7, 27, 235, 715, 3630, 21307
Offset: 0
T(3,2) = 2:
+------+ +------+
| 1 2 | | 1 3 |
| 3 .--+ | 2 .--+
+---+ +---+
Triangle T(n,k) begins:
1;
. 1;
. 1;
. 2, 1;
. 3, 1;
. 5, 4, 1;
. 16, 9, 5, 1;
. 49, 14, 6, 1;
. 70, 92, 20, 7, 1;
. 168, 204, 153, 27, 8, 1;
. 768, 738, 405, 235, 35, 9, 1;
Column heights are
A000124(k-1) for k>0.
Leftmost nonzero elements give
A219339.
Column of leftmost nonzero element is
A002024(n) for n>0.
Triangle read by rows reversed gives:
A219356.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
T:= (n, k)-> `if`(k>n, 0, g(n-k, k-1, [k])):
seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..7);
-
h[l_] := Module[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := Module[{s = i(i + 1)/2}, If[n == s, h[Join[l, Table[i - j, {j, 0, i - 1}]]], If[n > s, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i - 1, Append[l, i]]]]]];
T[n_, k_] := If[k > n, 0, g[n - k, k - 1, {k}]];
Table[Table[T[n, k], {n, k, k(k + 1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Sep 01 2023, after Alois P. Heinz *)
A219272
Number A(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part <= k; triangle A(n,k), k>=0, 0<=n<=k*(k+1)/2, read by columns.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 5, 16, 1, 1, 1, 3, 4, 9, 25, 49, 70, 168, 768, 1, 1, 1, 3, 4, 10, 30, 63, 162, 372, 1506, 3300, 7887, 15015, 48048, 292864, 1, 1, 1, 3, 4, 10, 31, 69, 182, 525, 1911, 5115, 17347, 43758, 149721, 626769, 1946516, 4934930
Offset: 0
A(3,2) = 2:
+------+ +------+
| 1 2 | | 1 3 |
| 3 .--+ | 2 .--+
+---+ +---+
A(3,3) = 3:
+------+ +------+ +---------+
| 1 2 | | 1 3 | | 1 2 3 |
| 3 .--+ | 2 .--+ +---------+
+---+ +---+
Triangle A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
. 1, 1, 1, 1, 1, 1, 1, 1, ...
. 1, 1, 1, 1, 1, 1, 1, ...
. 2, 3, 3, 3, 3, 3, 3, ...
. 3, 4, 4, 4, 4, 4, ...
. 5, 9, 10, 10, 10, 10, ...
. 16, 25, 30, 31, 31, 31, ...
. 49, 63, 69, 70, 70, ...
. 70, 162, 182, 189, 190, ...
Leftmost nonzero elements give
A219339.
Column of leftmost nonzero element is
A002024(n) for n>0.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, k), n=0..k*(k+1)/2), k=0..7);
-
h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = With[{s=i*(i+1)/2}, If[n==s, h[Join[l, Table[ i-j, {j, 0, i-1}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]];
A[n_, k_] := g[n, k, {}];
Table[Table[A[n, k], {n, 0, k*(k+1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz *)
A219320
Number of standard Young tableaux for partitions of n into exactly 7 distinct parts.
Original entry on oeis.org
48608795688960, 295284192952320, 2741894304901440, 18535141513347030, 134524383564933720, 851007098153745060, 5822391651578231460, 37395948352954386420, 238518115727229867660, 1501480486903096567740, 9413700760748972005500, 58167406634979463024710
Offset: 28
A219316
Number of standard Young tableaux for partitions of n into exactly 3 distinct parts.
Original entry on oeis.org
16, 35, 134, 435, 1213, 3454, 10484, 28249, 80302, 231895, 638406, 1798515, 5170279, 14361074, 40675562, 116701060, 327587324, 931854890, 2678822398, 7577813175, 21658478151, 62401989636, 177658786252, 509822342794, 1472491312385, 4213745453731, 12134760359950
Offset: 6
A219317
Number of standard Young tableaux for partitions of n into exactly 4 distinct parts.
Original entry on oeis.org
768, 2310, 11407, 44187, 200044, 680160, 2769674, 9826918, 38483206, 135059866, 515249581, 1829452107, 6941537898, 24678730371, 92755537994, 333149285650, 1252530682570, 4513808634840, 16936935284163, 61508180909442, 231189178986445, 843098892380280
Offset: 10
A219318
Number of standard Young tableaux for partitions of n into exactly 5 distinct parts.
Original entry on oeis.org
292864, 1153152, 7194434, 33888582, 177959434, 861962968, 4036054898, 18519351642, 85808400115, 389017226948, 1778061013340, 7967135309510, 35973133665285, 161398383117645, 726152765571840, 3256479005867430, 14629885404315411, 65641088599945380
Offset: 15
A219319
Number of standard Young tableaux for partitions of n into exactly 6 distinct parts.
Original entry on oeis.org
1100742656, 5462865408, 42035926724, 238839304110, 1477773782690, 8119282473120, 49406279584740, 259405071568305, 1468158383705685, 7798557001165665, 42744495396935010, 224697430361576340, 1226112009886575180, 6397760480647576200, 34422065224987469772
Offset: 21
A219321
Number of standard Young tableaux for partitions of n into exactly 8 distinct parts.
Original entry on oeis.org
29258366996258488320, 212593716124699852800, 2338077979922915527680, 18541315347775500731880, 156386347073221236234900, 1136852065645214098726260, 8834800018708598317055880, 63128042819798223843289680, 473458147812239316816345390, 3325190851643455231559076330
Offset: 36
A219322
Number of standard Young tableaux for partitions of n into exactly 9 distinct parts.
Original entry on oeis.org
273035280663535522487992320, 2329440559042398325938585600, 29867922172910654180714311680, 274273837545154589560694664960, 2661165012109500556315841832780, 22087643957707583932955480283900, 194567964473214023234175600529800, 1559754564113482833062794519391700
Offset: 45
Showing 1-10 of 13 results.
Comments