cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018837 Number of steps for knight to reach (n,0) on infinite chessboard.

Original entry on oeis.org

0, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17, 18, 19, 18, 19, 20, 21, 20, 21, 22, 23, 22, 23, 24, 25, 24, 25, 26, 27, 26, 27, 28, 29, 28, 29, 30, 31, 30, 31, 32, 33, 32, 33, 34, 35, 34, 35, 36, 37, 36, 37, 38, 39, 38, 39, 40, 41, 40, 41, 42, 43
Offset: 0

Views

Author

Keywords

Comments

The knight starts at (0,0) and we count the least number of steps. Row 1 of the array at A065775. - Clark Kimberling, Dec 20 2010
Apparently also the minimum number of steps of the (1,3)-leaper to reach (n,n) starting at (0,0). - R. J. Mathar, Jan 05 2018

Examples

			a(1)=3 counts these moves: (0,0) to (2,1) to (0,2) to (1,0). - _Clark Kimberling_, Dec 20 2010
		

Crossrefs

Cf. A065775, A183041-A183053, A083219 (essentially the same).
Cf. A018840 for the (2,3)-leaper.

Programs

  • Mathematica
    CoefficientList[Series[x (3 - x + x^2 - x^3 - 2 x^4 + 2 x^5)/((1-x)^2 (1+x) (1+x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Jan 06 2018 *)
    Array[Which[#==1,3,True,(#+Mod[#,4])/2]&,100,0] (* Elisha Hollander, Aug 05 2021 *)
  • PARI
    concat([0], Vec( x*(3-x+x^2-x^3-2*x^4+2*x^5)/((1-x)^2*(1+x)*(1+x^2)) + O(x^166) ) ) \\ Joerg Arndt, Sep 10 2014
    
  • Python
    def a(n): return 3 if n == 1 else (n + n % 4) // 2 # Elisha Hollander, Aug 05 2021

Formula

a(n) = 2[ (n+2)/4 ] if n even, 2[ (n+1)/4 ]+1 if n odd (n >= 8).
G.f.: x*(3-x+x^2-x^3-2*x^4+2*x^5)/((1-x)^2*(1+x)*(1+x^2)). a(n)=A083219(n), n<>1. - R. J. Mathar, Dec 15 2008
T(0,0)=0, T(1,0)=3, and for m>=1, T(4m-2,0)=2m, T(4m-1,0)=2m+1, T(4m,0)=2m, T(4m+1,0)=2m+1 where T(.,.) = A065775(.,.). - Clark Kimberling, Dec 20 2010
Sum_{n>=1} (-1)^n/a(n) = 5/3 - 2*log(2). - Amiram Eldar, Sep 10 2023