A018852 a(n)^3 is smallest cube beginning with n.
0, 1, 3, 7, 16, 8, 4, 9, 2, 21, 10, 48, 5, 11, 52, 25, 55, 12, 57, 27, 59, 6, 61, 62, 29, 63, 64, 3, 66, 31, 67, 68, 32, 15, 7, 33, 154, 72, 73, 34, 16, 161, 35, 76, 164, 77, 36, 78, 169, 17, 37, 8, 174, 81, 38, 82, 178, 83, 18, 39, 182, 85, 184, 86, 4, 87, 188, 189, 19, 191, 89, 193, 9
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from T. D. Noe)
Crossrefs
Programs
-
Maple
f:= proc(n) local d,m; for d from 0 do m:= ceil((10^d*n)^(1/3)); if m^3 < 10^d*(n+1) then return m fi od end proc: map(f, [$1..100]); # Robert Israel, Jul 26 2015
-
PARI
a(n)=k=1;while(k,d=digits(k^3);D=digits(n);if(#D<=#d,c=1;for(i=1,#D,if(D[i]!=d[i],c=0;break));if(c,return(k)));k++) vector(100,n,a(n)) \\ Derek Orr, Jul 26 2015
-
Python
for n in range(1,10**3): for k in range(10**3): if str(k**3).startswith(str(n)): print(k,end=', ') break n += 1 # Derek Orr, Aug 03 2014
Formula
a(n) >= n^(1/3), for all n > 0, with equality when n is a cube. - Derek Orr, Jul 26 2015
Extensions
0 prepended by Seiichi Manyama, Jan 30 2017