cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018904 Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(1,6).

Original entry on oeis.org

1, 6, 37, 229, 1418, 8781, 54377, 336734, 2085253, 12913101, 79965442, 495192589, 3066520913, 18989683446, 117595179557, 728217839669, 4509548979898, 27925753660941, 172932530727097, 1070898946784974, 6631629973859333, 41066915083090461, 254310255712336562
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions of n when there are 6 types of ones. - Milan Janjic, Aug 13 2010
Number of words of length n over {0,1,...,7} in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017

Programs

  • Mathematica
    Table[Simplify[(2^(-1 - n) ((7 - #)^n (-5 + #) + (5 + #) (7 + #)^n))/#] &@ Sqrt@ 29, {n, 0, 22}] (* or *)
    CoefficientList[Series[-(x - 1)/(5 x^2 - 7 x + 1), {x, 0, 22}], x] (* Michael De Vlieger, Jan 28 2017 *)
    LinearRecurrence[{7,-5},{1,6},30] (* Harvey P. Dale, May 01 2022 *)
  • PARI
    S(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=a[n-1]^2\a[n-2]+1); a
    S(1, 6, 40) \\ Colin Barker, Feb 16 2016

Formula

a(n) = (a(1)+1)*a(n-1) - (a(1)-1)*a(n-2) = 7*a(n-1) - 5*a(n-2).
G.f.: -(x-1) / (5*x^2-7*x+1). - Colin Barker, Feb 14 2013
a(n) = (2^(-1-n)*((7-sqrt(29))^n*(-5+sqrt(29)) + (5+sqrt(29))*(7+sqrt(29))^n)) / sqrt(29). - Colin Barker, Jan 20 2017