A018908 Define sequence S(a_0,a_1) by a_{n+2} is least integer such that a_{n+2}/a_{n+1}>a_{n+1}/a_n for n >= 0. This is S(3,4).
3, 4, 6, 10, 17, 29, 50, 87, 152, 266, 466, 817, 1433, 2514, 4411, 7740, 13582, 23834, 41825, 73397, 128802, 226031, 396656, 696082, 1221538, 2143649, 3761841, 6601570, 11584947, 20330164, 35676950, 62608682, 109870577, 192809421, 338356946, 593775047
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Index entries for Pisot sequences
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, [3, 4][n+1], 1 +floor(a(n-1)^2/a(n-2))) end: seq(a(n), n=0..50); # Alois P. Heinz, May 05 2014
-
Mathematica
a[n_] := a[n] = Switch[n, 0, 3, 1, 4, _, 1 + Floor[a[n-1]^2/a[n-2]]]; a /@ Range[0, 50] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)