A018910 Pisot sequence L(4,5).
4, 5, 7, 10, 15, 23, 36, 57, 91, 146, 235, 379, 612, 989, 1599, 2586, 4183, 6767, 10948, 17713, 28659, 46370, 75027, 121395, 196420, 317813, 514231, 832042, 1346271, 2178311, 3524580, 5702889, 9227467, 14930354, 24157819, 39088171, 63245988, 102334157, 165580143
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -1).
- Index entries for Pisot sequences
Crossrefs
See A008776 for definitions of Pisot sequences.
Programs
-
Mathematica
LinearRecurrence[{2, 0, -1}, {4, 5, 7}, 40] (* Jean-François Alcover, Dec 12 2016 *)
-
PARI
pisotL(nmax, a1, a2) = { a=vector(nmax); a[1]=a1; a[2]=a2; for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2])); a } pisotL(50, 4, 5) \\ Colin Barker, Aug 07 2016
Formula
G.f.: -(-4+3*x+3*x^2)/(x-1)/(x^2+x-1) = -2/(x-1)+(-x-2)/(x^2+x-1) . - R. J. Mathar, Nov 23 2007