cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A121605 Primes of the form (Fibonacci[n+3] + 2) = A018910[n], Pisot sequence L(4,5).

Original entry on oeis.org

5, 7, 23, 379, 17713, 102334157, 3416454622906709, 1100087778366101933, 468340976726457153752543329995931, 40934782466626840596168752972961528246149
Offset: 1

Views

Author

Alexander Adamchuk, Aug 09 2006

Keywords

Comments

a(n) = Fibonacci[A121606[n] + 3 ] + 2. Indices n = {1,2,5,11,19,37,73,85,155,193,227,233,257,785,797,1277,2371,2771,...} corresponding to prime A018910[n] = (Fibonacci[n+3] + 2) are listed in A121606[n].

Crossrefs

Programs

  • Mathematica
    Select[Table[Fibonacci[n+3]+2,{n,1,300}],PrimeQ]

A121606 Indices n such that A018910[n] = (Fibonacci[n+3] + 2) are primes.

Original entry on oeis.org

1, 2, 5, 11, 19, 37, 73, 85, 155, 193, 227, 233, 257, 785, 797, 1277, 2371, 2771, 4213, 9107
Offset: 1

Views

Author

Alexander Adamchuk, Aug 09 2006

Keywords

Comments

A018910[n] is Pisot sequence L(4,5). Prime Pisot L(4,5) numbers are A018910[a(n)] = Fibonacci[a(n) + 3 ] + 2 = {5,7,23,379,17713,102334157,...} = A121605[n]. Most listed a(n) are prime except a(8),a(9),a(14),a(18).

Crossrefs

Programs

  • Mathematica
    Do[f=Fibonacci[n+3]+2;If[PrimeQ[f],Print[n]],{n,1,3000}]
    Select[Range[10000],PrimeQ[Fibonacci[#+3]+2]&] (* Harvey P. Dale, Jul 01 2019 *)

Extensions

More terms from Harvey P. Dale, Jul 01 2019

A020717 Pisot sequences L(6,9), E(6,9).

Original entry on oeis.org

6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 0

Views

Author

Keywords

References

  • Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

Crossrefs

Subsequence of A001611, A048577.
See A008776 for definitions of Pisot sequences.
Pairwise sums of A018910.

Programs

  • Mathematica
    Table[Fibonacci[n + 5] + 1, {n, 0, 36}] (* Michael De Vlieger, Jul 27 2016 *)
  • PARI
    pisotE(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
      a
    }
    pisotE(50, 6, 9) \\ Colin Barker, Jul 27 2016

Formula

a(n) = Fibonacci(n+5)+1 = A001611(n+5).
a(n) = 2*a(n-1) - a(n-3).
a(n) = A020706(n+1). - R. J. Mathar, Oct 25 2008

A020743 Pisot sequence L(7,10).

Original entry on oeis.org

7, 10, 15, 23, 36, 57, 91, 146, 235, 379, 612, 989, 1599, 2586, 4183, 6767, 10948, 17713, 28659, 46370, 75027, 121395, 196420, 317813, 514231, 832042, 1346271, 2178311, 3524580, 5702889, 9227467, 14930354, 24157819, 39088171, 63245988, 102334157, 165580143
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A018910. See A008776 for definitions of Pisot sequences.
Cf. A020717.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1},{7,10,15},40] (* Harvey P. Dale, Jun 10 2022 *)
  • PARI
    pisotL(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));
      a
    }
    pisotL(50, 7, 10) \\ Colin Barker, Aug 07 2016

Formula

a(n) = Fib(n+5)+2 = A157725(n+5). a(n) = 2a(n-1) - a(n-3).

A048584 Pisot sequence L(5,7).

Original entry on oeis.org

5, 7, 10, 15, 23, 36, 57, 91, 146, 235, 379, 612, 989, 1599, 2586, 4183, 6767, 10948, 17713, 28659, 46370, 75027, 121395, 196420, 317813, 514231, 832042, 1346271, 2178311, 3524580, 5702889, 9227467, 14930354, 24157819, 39088171, 63245988, 102334157, 165580143
Offset: 0

Views

Author

Keywords

Comments

a(n)= BA^(n)B(1), n>=0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g. 5=`00`, 7=`010`, 10=`0110`, 15=`01110`,..., in Wythoff code.

Crossrefs

Subsequence of A018910. See A008776 for definitions of Pisot sequences.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1},{5,7,10},40] (* Harvey P. Dale, Oct 02 2016 *)
  • PARI
    pisotL(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));
      a
    }
    pisotL(50, 5, 7) \\ Colin Barker, Aug 07 2016

Formula

a(n) = Fib(n+4)+2. a(n) = 2a(n-1) - a(n-3).
a(n)=A020743(n-1), n>0. - R. J. Mathar, Oct 15 2008

A166876 a(n) = a(n-1) + Fibonacci(n), a(1)=1983.

Original entry on oeis.org

1983, 1984, 1986, 1989, 1994, 2002, 2015, 2036, 2070, 2125, 2214, 2358, 2591, 2968, 3578, 4565, 6162, 8746, 12927, 19692, 30638, 48349, 77006, 123374, 198399, 319792, 516210, 834021, 1348250, 2180290, 3526559, 5704868, 9229446, 14932333, 24159798
Offset: 1

Views

Author

Geoff Ahiakwo, Oct 22 2009

Keywords

Comments

Starting at some a(1)=s and creating further terms with the recurrence a(n)=a(n-1)+A000045(n) defines a family of sequences with recurrences a(n)= 2*a(n-1) -a(n-3).
The generating functions are x*( s+(1-s)*x+(1-s)*x^2 )/((1-x) * (1-x-x^2)).
The terms are a(n) = A000045(n+2)+s-2 = s + A001911(n-1) = (2*s+1+k)/2 where k=A166863(n-1), n>=1.
Examples: Up to offsets, s=1 yields A000071, s=2 yields A000045 shifted left thrice, s=3 yields A001611 shifted left thrice, s=4 yields A018910.
I appreciate the editing by R. J. Mathar. However I would like further analysis of the following formula. The sequence which I call GAP can have any integer as its first term, not just 1983. Thus a(1) can be 0, 1, 2, 3,... Then a(2) is always a(1)+ 1, while a(3) is a(1) + k(n)/2; where k(n) = k(n-2)+ k(n-1)+4 (This is a separate sequence submitted for consideration). [Geoff Ahiakwo, Nov 19 2009]

Examples

			For s=1983, n=3, we have k= A166863(2)= 5, a(3) = (2s+1+k)/2 = (2*1983+1+5)/2 = 1986.
For n=3, a(3)= a(1)+ k(3)/2 = a(1)+ [K(3-2)+ k(3-1)]/2 + 2 = a(1)+ 1 + 2 thus if a(1)is 0, a(3)= 3; if a(1)= 5, a(3)= 8; if a(1)=1983, a(3)= 1986, etc. [_Geoff Ahiakwo_, Nov 19 2009]
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -1}, {1983, 1984, 1986}, 100] (* G. C. Greubel, May 27 2016 *)

Formula

a(n) = 2*a(n-1) - a(n-3).
G.f.: x*(-1983 + 1982*x + 1982*x^2)/((1-x)*(x^2+x-1)).
Let a(n)= a(1)+ k(n)/2, then G.f.: k(n)= k(n-2)+ k(n-1) + 4. - Geoff Ahiakwo, Nov 19 2009

Extensions

Definition and comments edited by R. J. Mathar, Oct 26 2009

A277084 Pisot sequence L(4,14).

Original entry on oeis.org

4, 14, 49, 172, 604, 2122, 7456, 26198, 92052, 323444, 1136489, 3993295, 14031289, 49301911, 173232725, 608689936, 2138761243, 7514991434, 26405516950, 92781386582, 326007088306, 1145495077635, 4024940008834, 14142480741305, 49692606865991, 174605518105877
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

There is no simple g.f. - Ilya Gutkovskiy, May 23 2019

Crossrefs

Cf. A008776 for definitions of Pisot sequences.
Cf. A010904 (Pisot sequence E(4,14)), A251221 (seems to be Pisot sequence P(4,14)).

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 25}]

Formula

a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 4, a(1) = 14.

A258316 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 or 0011.

Original entry on oeis.org

5, 7, 7, 10, 9, 10, 15, 12, 12, 15, 23, 17, 15, 17, 23, 36, 25, 20, 20, 25, 36, 57, 38, 28, 25, 28, 38, 57, 91, 59, 41, 33, 33, 41, 59, 91, 146, 93, 62, 46, 41, 46, 62, 93, 146, 235, 148, 96, 67, 54, 54, 67, 96, 148, 235, 379, 237, 151, 101, 75, 67, 75, 101, 151, 237, 379, 612
Offset: 1

Views

Author

R. H. Hardin, Jun 29 2015

Keywords

Comments

Table starts
...5...7..10..15..23..36..57..91.146.235.379.612..989.1599.2586.4183.6767.10948
...7...9..12..17..25..38..59..93.148.237.381.614..991.1601.2588.4185.6769.10950
..10..12..15..20..28..41..62..96.151.240.384.617..994.1604.2591.4188.6772.10953
..15..17..20..25..33..46..67.101.156.245.389.622..999.1609.2596.4193.6777.10958
..23..25..28..33..41..54..75.109.164.253.397.630.1007.1617.2604.4201.6785.10966
..36..38..41..46..54..67..88.122.177.266.410.643.1020.1630.2617.4214.6798.10979
..57..59..62..67..75..88.109.143.198.287.431.664.1041.1651.2638.4235.6819.11000
..91..93..96.101.109.122.143.177.232.321.465.698.1075.1685.2672.4269.6853.11034
.146.148.151.156.164.177.198.232.287.376.520.753.1130.1740.2727.4324.6908.11089
.235.237.240.245.253.266.287.321.376.465.609.842.1219.1829.2816.4413.6997.11178
Apparently: put 1s in some number of nonadjacent columns or put 1s in some number of nonadjacent rows

Examples

			Some solutions for n=4 k=4
..0..0..0..0..0....1..1..1..1..1....0..0..0..0..0....1..1..1..1..1
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....1..1..1..1..1....0..0..0..0..0
..1..1..1..1..1....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
		

Crossrefs

Column 1 is A018910
Column 2 is A157727(n+3)
Column 3 is A187107(n+3)
Diagonal is A001595(n+2)
Superdiagonal 1 is A000071(n+5)
Superdiagonal 2 is A001610(n+3)
Superdiagonal 3 is A001595(n+4)
Superdiagonal 5 is A022308(n+5)
Superdiagonal 6 is A022319(n+5)
Superdiagonal 7 is A022407(n+5)
Superdiagonal 9 is A022323(n+7)

Formula

Empirical: T(n,k) = Fibonacci(n+3) +Fibonacci(k+3) -1
Empirical for rows, columns and nw-se diagonals: a(n) = 2*a(n-1) -a(n-3)
Showing 1-8 of 8 results.