cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A169622 a(n) = a(n-1) + Fibonacci(n), a(1)=5.

Original entry on oeis.org

5, 6, 8, 11, 16, 24, 37, 58, 92, 147, 236, 380, 613, 990, 1600, 2587, 4184, 6768, 10949, 17714, 28660, 46371, 75028, 121396, 196421, 317814, 514232, 832043, 1346272, 2178312, 3524581, 5702890, 9227468, 14930355, 24157820, 39088172, 63245989, 102334158
Offset: 1

Views

Author

Geoff Ahiakwo, Dec 03 2009

Keywords

Examples

			n=2: a(1)+Fibonacci(2) = 5+1 = 6.
n=3: a(2)+Fibonacci(3) = 6+2 = 8.
		

Crossrefs

Programs

  • Magma
    [ n eq 1 select 5 else Self(n-1)+Fibonacci(n): n in [1..40] ];  // Klaus Brockhaus, Jan 31 2011
    
  • Mathematica
    RecurrenceTable[{a[1]==5,a[n]==a[n-1]+Fibonacci[n]},a[n],{n,40}] (* or *) LinearRecurrence[{2,0,-1},{5,6,8},40] (* Harvey P. Dale, Jul 20 2011 *)
  • PARI
    Vec((5 - 4*x - 4*x^2) / ((1 - x)*(1 - x - x^2)) + O(x^40)) \\ Colin Barker, Apr 20 2017

Formula

a(n) = 5 + A168193(n)/2.
a(n) = 2*a(n-1) - a(n-3) = 3 + A000045(n+2). - R. J. Mathar Dec 04 2009
G.f.: x*(-5+4*x+4*x^2) / ((1-x)*(x^2+x-1)). - R. J. Mathar Dec 04 2009
a(n) = 3 + (2^(-1-n)*((1-sqrt(5))^n*(-3+sqrt(5)) + (1+sqrt(5))^n*(3+sqrt(5)))) / sqrt(5). - Colin Barker, Apr 20 2017
Showing 1-1 of 1 results.