cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018916 Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,8).

Original entry on oeis.org

2, 8, 31, 120, 464, 1794, 6936, 26816, 103676, 400832, 1549696, 5991432, 23164064, 89556864, 346244592, 1338650240, 5175487232, 20009459744, 77360538496, 299091179520, 1156345798592, 4470662117376, 17284466110464, 66825172844672
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Aug 14 2010: (Start)
The sequence b(n+1)=2*a(n), n>= 0 with b(0)=1, is a berserker sequence, see A180141. For the corner squares 16 A[5] vectors, with decimal values between 19 and 400, lead to the b(n) sequence.
(End)
Not to be confused with the Pisot T(2,8) sequence, which is A004171. - R. J. Mathar, Feb 13 2016

Programs

  • Mathematica
    LinearRecurrence[{4, 0, -2}, {2, 8, 31}, 25] (* Vincenzo Librandi, Feb 15 2016 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(2, 8, 30) \\ Colin Barker, Feb 14 2016

Formula

From Johannes W. Meijer, Aug 14 2010: (Start)
G.f.: (2-x^2)/(1-4*x+2*x^3).
a(n) = 4*a(n-1)-2*a(n-3) with a(0)=2, a(1)=8 and a(2)=31.
a(n) = (119-24*z1-64*z1^2)*z1^(-n-1)/202+(119-24*z2-64*z2^2)*z2^(-n-1)/202+(119-24*z3-64*z3^2)*z3^(-n-1)/202 with alpha=2*arctan(sqrt(303)/9), p=(sqrt(6)/3)*sin((alpha+Pi)/6), q=sqrt(2)*cos((alpha+Pi)/6), z1:=2*p, z2=(-q-p) and z3=(q-p).
(End)

Extensions

More terms from Johannes W. Meijer, Aug 14 2010