A019334 Primes with primitive root 3.
2, 5, 7, 17, 19, 29, 31, 43, 53, 79, 89, 101, 113, 127, 137, 139, 149, 163, 173, 197, 199, 211, 223, 233, 257, 269, 281, 283, 293, 317, 331, 353, 379, 389, 401, 449, 461, 463, 487, 509, 521, 557, 569, 571, 593, 607, 617, 631, 641, 653, 677, 691, 701, 739, 751, 773, 797
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- J. Conde, M. Miller, J. M. Miret, K. Saurav, On the Nonexistence of Almost Moore Digraphs of Degree Four and Five, International Conference on Mathematical Computer Engineering (ICMCE-13), pp. 2-7, At VIT University, Chennai, Volume: I, 2013.
- J. Conde, M. Miller, J. M. Miret, K. Saurav, On the Nonexistence of Almost Moore Digraphs of Degree Four and Five, Mathematics in Computer Science, June 2015, Volume 9, Issue 2, pp 145-149.
- Eric Weisstein's World of Mathematics, Artin's constant
- Wikipedia, Artin's conjecture on primitive roots
- Index entries for primes by primitive root
Programs
-
Mathematica
pr=3; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
-
PARI
isok(p) = isprime(p) && (p!=3) && (znorder(Mod(3, p))+1 == p); \\ Michel Marcus, May 12 2019
Comments