A019338 Primes with primitive root 8.
3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 701, 773, 797, 821, 827, 941, 947, 1019, 1061, 1091, 1109, 1187, 1229, 1259, 1277, 1283, 1301, 1307, 1373, 1427
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for primes by primitive root
Programs
-
Maple
select(t -> isprime(t) and numtheory:-order(8,t) = t-1, [2*i+1 $ i=1..1000]); # Robert Israel, Aug 12 2014
-
Mathematica
pr=8; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *) a[p_, q_]:=Sum[2 Cos[2^n Pi/((2 q+1)(2 p+1))],{n,1,2 q p}] 2 Select[Range[800],Rationalize[N[a[#, 3],20]]==1 &]+1 (* Gerry Martens, Apr 28 2015 *) Join[{3,5},Select[Prime[Range[250]],PrimitiveRoot[#,8]==8&]] (* Harvey P. Dale, Aug 10 2019 *)
-
PARI
is(n)=isprime(n) && n>2 && znorder(Mod(8,n))==n-1 \\ Charles R Greathouse IV, May 21 2015
Formula
Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime of this sequence when a(p,3)==1. - Gerry Martens, May 15 2015
On Artin's conjecture, a(n) ~ (5/3A) n log n, where A = A005596 is Artin's constant. - Charles R Greathouse IV, May 21 2015
Comments