cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019460 Add 1, multiply by 1, add 2, multiply by 2, etc., start with 2.

Original entry on oeis.org

2, 3, 3, 5, 10, 13, 39, 43, 172, 177, 885, 891, 5346, 5353, 37471, 37479, 299832, 299841, 2698569, 2698579, 26985790, 26985801, 296843811, 296843823, 3562125876, 3562125889, 46307636557, 46307636571, 648306911994, 648306912009, 9724603680135, 9724603680151, 155593658882416
Offset: 0

Views

Author

Keywords

Comments

After a(7) = 43, the next prime in the sequence is a(649) with 676 digits. - M. F. Hasler, Jan 12 2011

References

  • New York Times, Oct 13, 1996.

Crossrefs

Cf. A019461 (same, but start with 0), A019463 (start with 1), A019462 (start with 3), A082448 (start with 4).
Cf. A082458, A019464, A019465, A019466 (similar, but first multiply, then add; starting with 0,1,2,3).

Programs

  • Mathematica
    a[n_] := If[ OddQ@n, a[n - 1] + (n + 1)/2, a[n - 1]*n/2]; a[0] = 2; Table[ a@n, {n, 0, 28}] (* Robert G. Wilson v, Jul 21 2009 *)
  • PARI
    A019460(n)=2*(A000522(n\2)+(n\2)!)-if(bittest(n,0),1,n\2+2)
    /* For producing the terms in increasing order, the following 'hack' can be used M. F. Hasler, Jan 12 2011 */
    lastn=0; an1=1; A000522(n)={ an1=if(n, n==lastn && return(an1); n==lastn+1||error(); an1*lastn=n)+1 }
    
  • Python
    l=[2]
    for n in range(1, 101):
        l.append(l[n - 1] + ((n + 1)//2) if n%2 else l[n - 1]*(n//2))
    print(l) # Indranil Ghosh, Jul 05 2017

Formula

a(2n) = 2*(A000522(n) + n!) - n - 2.
a(2n+1) = 2*(A000522(n) + n!) - 1.
Recursive: a(0) = 2, a(n) = (1 + floor((n-1)/2) - ceiling((n-1)/2))*(a(n-1) + (n+2)/2) + (ceiling((n-1)/2) - floor((n-1)/2))*(n/2)*a(n-1). - Wesley Ivan Hurt, Jan 12 2013

Extensions

One more term from Robert G. Wilson v, Jul 21 2009
Formula provided by Nathaniel Johnston, Nov 11 2010
Formula double-checked and PARI code added by M. F. Hasler, Nov 12 2010
Edited by M. F. Hasler, Feb 25 2018