A019489 Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(3,7).
3, 7, 16, 36, 80, 177, 391, 863, 1904, 4200, 9264, 20433, 45067, 99399, 219232, 483532, 1066464, 2352161, 5187855, 11442175, 25236512, 55660880, 122763936, 270764385, 597189651, 1317143239, 2905050864, 6407291380, 14131726000, 31168502865, 68744297111
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Index entries for Pisot sequences
Programs
-
Maple
A019489 := proc(n) option remember; if n <= 1 then op(n+1,[3,7]) ; else a := procname(n-1)^2/procname(n-2) ; if type(a,'integer') then a-1 ; else floor(a) ; fi; end if; end proc: # R. J. Mathar, Feb 11 2016
-
PARI
T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a T(3, 7, 30) \\ Colin Barker, Feb 16 2016
Formula
Empirical G.f.: -(x^3-x^2+2*x-3) / ((x-1)*(x^3+2*x-1)). [Colin Barker, Dec 21 2012]
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for n>0. - Bruno Berselli, Feb 15 2016
Comments