cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019500 Number of 6-ary search trees on n keys.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 21, 56, 126, 252, 492, 1062, 2667, 7252, 19509, 49824, 121019, 286974, 687384, 1702308, 4357383, 11322408, 29307458, 74897808, 189349041, 477491356, 1211349276, 3103673406, 8017385416, 20780391882, 53812468392, 138999941172, 358502419242
Offset: 0

Views

Author

James Fill (jimfill(AT)jhu.edu)

Keywords

Programs

  • Maple
    A:= proc(n) option remember; if n=0 then 1 else convert(series(
          add(x^i, i=0..4)+ x^5*A(n-1)^6, x=0,n+1), polynom) fi
        end:
    a:= n-> coeff(A(n), x, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 22 2008
  • Mathematica
    A[n_] := A[n] = If[n==0, 1, Series[Sum[x^i, {i, 0, 4}] + x^5*A[n-1]^6, {x, 0, n+1}] // Normal]; a[n_] := Coefficient[A[n], x, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.705312740243..., c = 0.3835479397... . - Vaclav Kotesovec, Sep 06 2014

Extensions

More terms from Alois P. Heinz, Aug 22 2008