A019507 Droll numbers: numbers > 1 whose sum of even prime factors equals the sum of odd prime factors.
72, 240, 672, 800, 2240, 4224, 5184, 6272, 9984, 14080, 17280, 33280, 39424, 48384, 52224, 57600, 93184, 116736, 161280, 174080, 192000, 247808, 304128, 373248, 389120, 451584, 487424, 537600, 565248, 585728, 640000, 718848, 1013760, 1089536, 1244160, 1384448
Offset: 1
Keywords
Examples
6272 = 2*2*2*2*2*2*2*7*7 is droll since 2+2+2+2+2+2+2 = 14 = 7+7.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
- Giovanni Resta, Droll numbers, Numbers Aplenty.
Crossrefs
For count instead of sum we have A072978.
Programs
-
Maple
f:= proc(k, m) # numbers whose sum of prime factors >= m is k; m is prime local S,p,j; option remember; if k = 0 then return [1] elif m > k then return [] fi; S:= NULL: p:= nextprime(m); for j from k by -m to 0 do S:= S, op(map(`*`, procname(j,p) , m^((k-j)/m))) od; [S] end proc: g:= proc(N) local m,R; R:= NULL; for m from 1 while 2^m < N do R:= R, op(map(`*`,select(`<=`,f(2*m,3), N/2^m),2^m)); od; sort([R]) end proc: g(10^8); # Robert Israel, Feb 20 2025
-
Mathematica
Select[Range[2, 2*10^6, 2], First[#] == Total[Rest[#]] & [Times @@@ FactorInteger[#]] &] (* Paolo Xausa, Feb 19 2025 *)
-
PARI
isok(n) = {if (n % 2, return (0)); f = factor(n); return (2*f[1,2] == sum(i=2, #f~, f[i,1]*f[i,2]));} \\ Michel Marcus, Jun 21 2013
Formula
These are even numbers k such that A366839(k/2) = A366840(k). - Gus Wiseman, Oct 25 2023 (corrected Feb 19 2025)
Extensions
Name edited by Paolo Xausa, Feb 19 2025