A019529 Sum of a(n) terms of 1/sqrt(k) first strictly exceeds n.
1, 2, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 202, 217, 232, 247, 263, 280, 297, 314, 332, 351, 370, 389, 409, 430, 451, 472, 494, 517, 540, 563, 587, 612, 637, 662, 688, 715, 741, 769, 797, 825
Offset: 0
Keywords
Examples
Let b(k) = 1 + 1/sqrt(2) + 1/sqrt(3) + ... + 1/sqrt(k): .k.......1....2.....3.....4.....5.....6.....7 ------------------------------------------------- b(k)...1.00..1.71..2.28..2.78..3.23..3.64..4.01 For A019529 we have: n=0: smallest k is a(0) = 1 since 1.00 > 0 n=1: smallest k is a(1) = 2 since 1.71 > 1 n=2: smallest k is a(2) = 3 since 2.28 > 2 n=3: smallest k is a(3) = 5 since 3.23 > 3 n=4: smallest k is a(4) = 7 since 4.01 > 4 For A054040 we have: n=1: smallest k is a(1) = 1 since 1.00 >= 1 n=2: smallest k is a(2) = 3 since 2.28 >= 2 n=3: smallest k is a(3) = 5 since 3.23 >= 3 n=4: smallest k is a(4) = 7 since 4.01 >= 4
Programs
-
Mathematica
s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/Sqrt[ k ], 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 75} ] With[{c=N[Accumulate[Table[1/Sqrt[x],{x,1000}]]]},Table[Position[c,?(#>n&),1,1],{n,0,1000}]]//Flatten (* _Harvey P. Dale, Mar 19 2025 *)
Extensions
Edited by N. J. A. Sloane, Sep 01 2009