cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A054040 a(n) terms of series {1/sqrt(j)} are >= n.

Original entry on oeis.org

1, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 202, 217, 232, 247, 263, 280, 297, 314, 332, 351, 370, 389, 409, 430, 451, 472, 494, 517, 540, 563, 587, 612, 637, 662, 688, 715, 741, 769, 797, 825
Offset: 1

Views

Author

Asher Auel, Apr 13 2000

Keywords

Comments

In many cases the first differences have the form {2k, 2k, 2k, 2k+1} (A004524). In such cases the second differences are {0, 0, 1, 1}. See A082915 for the exceptions. In as many as these, the first differences have the form {2k-1, 2k-1, 2k-1, 2k}. - Robert G. Wilson v, Apr 18 2003 [Corrected by Carmine Suriano, Nov 08 2013]
a(100)=2574, a(1000)=250731 & a(10000)=25007302 which differs from Sum{i=4..104}A004524(i)=2625, Sum{i=4..1004}A004524(i)=251250 & Sum{i=4..10004}A004524(i)=25012500. - Robert G. Wilson v, Apr 18 2003
A054040(n) <= A011848(n+2), A054040(10000)=25007302 and A011848(n+2)=25007500. - Robert G. Wilson v, Apr 18 2003

Examples

			Let b(k) = 1 + 1/sqrt(2) + 1/sqrt(3) + ... + 1/sqrt(k):
.k.......1....2.....3.....4.....5.....6.....7
-------------------------------------------------
b(k)...1.00..1.71..2.28..2.78..3.23..3.64..4.01
For A019529 we have:
n=0: smallest k is a(0) = 1 since 1.00 > 0
n=1: smallest k is a(1) = 2 since 1.71 > 1
n=2: smallest k is a(2) = 3 since 2.28 > 2
n=3: smallest k is a(3) = 5 since 3.23 > 3
n=4: smallest k is a(4) = 7 since 4.01 > 4
For this sequence we have:
n=1: smallest k is a(1) = 1 since 1.00 >= 1
n=2: smallest k is a(2) = 3 since 2.28 >= 2
n=3: smallest k is a(3) = 5 since 3.23 >= 3
n=4: smallest k is a(4) = 7 since 4.01 >= 4
		

Crossrefs

See A019529 for a different version.

Programs

  • Mathematica
    f[n_] := Block[{k = 0, s = 0}, While[s < n, k++; s = N[s + 1/Sqrt[k], 50]]; k]; Table[f[n], {n, 1, 60}]
  • PARI
    a(n)=if(n<0,0,t=1;z=1;while(zBenoit Cloitre, Sep 23 2012

Formula

Let f(n) = (1/4)*(n^2-2*zeta(1/2)*n) then we have a(n) = f(n) + O(1). More precisely we claim that for n >= 2 we have a(n) = floor(f(n)+c) where c > Max{a(n)-f(n) : n>=1} = a(153) - f(153) = 1.032880076066608813953... and we believe we can take c = 1.033. - Benoit Cloitre, Sep 23 2012

Extensions

Definition and offset modified by N. J. A. Sloane, Sep 01 2009

A054041 Sum of a(n) terms of 1/k^(1/3) first exceeds n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 15, 17, 20, 23, 25, 28, 32, 35, 38, 41, 45, 49, 52, 56, 60, 64, 68, 72, 76, 81, 85, 89, 94, 98, 103, 108, 113, 117, 122, 127, 132, 138, 143, 148, 153, 159, 164, 170, 175, 181, 187, 192, 198, 204, 210, 216, 222, 228, 234, 240, 247, 253, 259
Offset: 0

Views

Author

Asher Auel, Apr 13 2000

Keywords

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/k^(1/3), 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 75} ]

Extensions

Corrected and extended by Robert G. Wilson v, Aug 01 2000
Edited by N. J. A. Sloane, Jan 17 2009 at the suggestion of R. J. Mathar

A292774 a(n) = smallest m such that Sum_{i=1..m} 1/sqrt(prime(i)) >= n.

Original entry on oeis.org

2, 4, 8, 13, 21, 30, 43, 58, 76, 97, 121, 149, 180, 214, 252, 294, 340, 390, 444, 502, 564, 630, 700, 775, 854, 937, 1025, 1118, 1215, 1317, 1423, 1535, 1650, 1771, 1897, 2027, 2162, 2303, 2448, 2598, 2753, 2914, 3079, 3250, 3426, 3607, 3793, 3984, 4181, 4383, 4591, 4803, 5022, 5245, 5474, 5709
Offset: 1

Views

Author

N. J. A. Sloane, Sep 30 2017

Keywords

Crossrefs

Programs

  • Maple
    Digits:=50;
    s0:=0; k:=1; lisi:=[]; lisP:=[];
    for i from 1 to 10000 do p:=ithprime(i);
    s0:=s0+evalf(1/sqrt(p));
    if s0 >= k then k:=k+1; lisi:=[op(lisi),i]; lisP:=[op(lisP),p]; fi;
    od:
    lisi; # A292774
    lisP; # A292775
  • Mathematica
    f[n_]:=Block[{k=0, s=0}, While[sVincenzo Librandi, Oct 01 2017 *)

Formula

a(n) ~ (n^2*log(n))/2. - Benoit Cloitre, Oct 01 2017 [This follows from the asymptotics for A292775]

A292775 a(n) = smallest prime q such that Sum_{primes p <= q} 1/sqrt(p) >= n.

Original entry on oeis.org

3, 7, 19, 41, 73, 113, 191, 271, 383, 509, 661, 859, 1069, 1307, 1601, 1931, 2287, 2687, 3119, 3583, 4093, 4657, 5279, 5881, 6607, 7351, 8167, 9001, 9851, 10837, 11867, 12899, 13967, 15161, 16361, 17627, 19031, 20389, 21821, 23297, 24917, 26557, 28279, 30059, 31891, 33647, 35617, 37607, 39779
Offset: 1

Views

Author

N. J. A. Sloane, Sep 30 2017

Keywords

Crossrefs

Programs

  • Maple
    Digits:=50;
    s0:=0; k:=1; lisi:=[]; lisP:=[];
    for i from 1 to 10000 do p:=ithprime(i);
    s0:=s0+evalf(1/sqrt(p));
    if s0 >= k then k:=k+1; lisi:=[op(lisi),i]; lisP:=[op(lisP),p]; fi;
    od:
    lisi; # A292774
    lisP; # A292775
  • Mathematica
    f[n_]:=Block[{k=0, s=0}, While[sVincenzo Librandi, Oct 01 2017 *)

Formula

a(n) ~ prime(n)^2. - Benoit Cloitre, Oct 01 2017 [See link]

A056176 Sum of a(n) terms of 1/k^(1/4) first exceeds n.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 12, 14, 16, 18, 20, 23, 25, 27, 29, 32, 34, 37, 39, 42, 44, 47, 49, 52, 55, 57, 60, 63, 66, 69, 72, 75, 77, 80, 83, 86, 90, 93, 96, 99, 102, 105, 108, 112, 115, 118, 122, 125, 128, 132, 135, 138, 142, 145, 149, 152, 156, 159, 163, 167, 170
Offset: 0

Views

Author

Robert G. Wilson v, Aug 01 2000

Keywords

Crossrefs

Cf. A019529.

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/k^(1/4), 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 75} ]

A056177 Sum of a(n) terms of 1/k^(1/5) first exceeds n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 15, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 59, 62, 64, 66, 68, 71, 73, 75, 78, 80, 83, 85, 88, 90, 92, 95, 97, 100, 102, 105, 108, 110, 113, 115, 118, 120, 123, 126, 128, 131, 134, 136, 139
Offset: 0

Views

Author

Robert G. Wilson v, Aug 01 2000

Keywords

Crossrefs

Cf. A019529.

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/k^(1/5), 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 75} ]

A056178 Sum of a(n) terms of 1/k^(2/3) first exceeds n.

Original entry on oeis.org

1, 2, 3, 6, 10, 15, 22, 31, 42, 56, 71, 90, 112, 137, 165, 197, 233, 272, 317, 365, 419, 477, 541, 610, 685, 766, 853, 946, 1045, 1152, 1265, 1386, 1514, 1650, 1793, 1945, 2105, 2274, 2451, 2637, 2833, 3038, 3252, 3477, 3711, 3956, 4212, 4478, 4755, 5043
Offset: 0

Views

Author

Robert G. Wilson v, Aug 01 2000

Keywords

Crossrefs

Cf. A019529 and A002387.

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/k^(2/3), 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 75} ]
    Flatten[Table[Position[Accumulate[Table[1/k^(2/3),{k,5100}]],?(#>n&),{1}, 1],{n, 0,50}]] (* _Harvey P. Dale, Mar 16 2015 *)

A056179 Sum of a(n) terms of 1/k^(3/4) first exceeds n.

Original entry on oeis.org

1, 2, 3, 7, 12, 20, 31, 46, 67, 94, 128, 170, 222, 285, 361, 452, 558, 682, 826, 991, 1179, 1394, 1637, 1909, 2215, 2556, 2935, 3354, 3817, 4327, 4885, 5496, 6163, 6889, 7676, 8530, 9453, 10449, 11521, 12674, 13911, 15237, 16656, 18171, 19787, 21509
Offset: 0

Views

Author

Robert G. Wilson v, Aug 01 2000

Keywords

Crossrefs

Cf. A019529 and A002387.

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/k^(3/4), 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 60} ]

A056180 Sum of a(n) terms of 1/k^(4/5) first exceeds n.

Original entry on oeis.org

1, 2, 4, 7, 14, 24, 40, 63, 95, 140, 201, 281, 384, 516, 682, 888, 1141, 1449, 1820, 2263, 2789, 3408, 4133, 4976, 5951, 7074, 8360, 9826, 11492, 13376, 15499, 17884, 20554, 23533, 26849, 30528, 34600, 39095, 44045, 49485, 55450, 61976, 69103
Offset: 0

Views

Author

Robert G. Wilson v, Aug 01 2000

Keywords

Crossrefs

Cf. A019529 and A002387.

Programs

A056181 Sum of a(n) terms of 1/k^(5/6) first exceeds n.

Original entry on oeis.org

1, 2, 4, 8, 15, 28, 48, 79, 126, 194, 290, 422, 602, 841, 1155, 1561, 2079, 2733, 3550, 4562, 5803, 7314, 9140, 11330, 13941, 17035, 20681, 24956, 29944, 35735, 42432, 50143, 58988, 69097, 80610, 93679
Offset: 0

Views

Author

Robert G. Wilson v, Aug 01 2000

Keywords

Crossrefs

Cf. A019529 and A002387.

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/k^(5/6), 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 35} ]
Showing 1-10 of 14 results. Next