A019557 Coordination sequence for G_2 lattice.
1, 12, 30, 48, 66, 84, 102, 120, 138, 156, 174, 192, 210, 228, 246, 264, 282, 300, 318, 336, 354, 372, 390, 408, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 642, 660, 678, 696, 714, 732, 750, 768, 786, 804, 822, 840, 858, 876, 894, 912, 930, 948, 966, 984, 1002, 1020, 1038, 1056
Offset: 0
Examples
From _Peter M. Chema_, Mar 20 2016: (Start) Illustration of initial terms: o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 12 30 48 Compare to A003154, A045946, and A270700. (End)
Links
- Michael Baake and Uwe Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), pp. 253-256
- Roland Bacher, Pierre de la Harpe, and Boris Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Séries 1) (1997), pp. 1137-1142.
- Roland Bacher, Pierre de la Harpe, and Boris Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, Annales de l'institut Fourier, 49 no. 3 (1999), pp. 727-762.
- Tom Karzes, Tiling Coordination Sequences.
- N. J. A. Sloane, Illustration of layers 0,1,2 in the graph of the Dual(3.12.12) tiling. Centered at a 12-valent node. Note that some of the blue edges are not part of the underlying graph.
- N. J. A. Sloane, Overview of coordination sequences of Laves tilings. [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Minimum Vertex Coloring.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
For partial sums see A082040.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Programs
-
Mathematica
CoefficientList[Series[(1 + 10 x + 7 x^2)/(1 - x)^2, {x, 0, 59}], x] (* Michael De Vlieger, Mar 21 2016 *)
-
PARI
my(x='x+O('x^100)); Vec((1+10*x+7*x^2)/(1-x)^2) \\ Altug Alkan, Mar 20 2016
Formula
a(n) = 18*n - 6, n >= 1.
G.f.: (1 + 10*x + 7*x^2)/(1-x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*exp(x)*(3*x - 1) + 7.
a(n) = 6*A016789(n-1) for n >= 1.
a(n) = 2*a(n-1) - a(n-2) for n >= 3. (End)
Comments