A019566 The differences 1-1, 21-12, 321-123, ..., 10987654321-12345678910, 1110987654321-1234567891011, etc.
0, 9, 198, 3087, 41976, 530865, 6419754, 75308643, 864197532, -1358024589, -123580236690, -2345801446791, 775432077543108, 178553219976533007, 27956332009875522906, 3805734210999774512805, 481583522109989673502704, 58259362312008979572492603
Offset: 1
References
- S. S. Gupta, Unique Numbers, Science Today, Jan 01 1988, India.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..350
- Shyam Sunder Gupta, Unique Numbers
- Shyam Sunder Gupta, On Some Marvellous Numbers of Kaprekar, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 9, 275-315. See Section 9.4.
Programs
-
Maple
u:= proc(n) u(n):= `if`(n=1, 1, parse(cat(u(n-1), n))) end: d:= proc(n) d(n):= `if`(n=1, 1, parse(cat(n, d(n-1)))) end: a:= n-> d(n)-u(n): seq(a(n), n=1..20); # Alois P. Heinz, Dec 06 2014
-
Mathematica
f[n_] := Block[ {a = "", k = 1}, While[k < n + 1, a = StringJoin[ ToString[k], a]; k++ ]; Return[ ToExpression[a] - ToExpression[ StringReverse[a]]]]; Table[ f[n], {n, 1, 17} ]
-
PARI
A = vector(25); c = 1; f = 1; for (i = 2, 9, c = 10*c + i; f = f + i*10^(i - 1); A[i] = (f - c)); for (i = 10, 25, c = 100*c + i; f = f + i*10^(2*i - 11);; A[i] = (f - c)); A \\ David Wasserman, Nov 09 2004
-
PARI
apply( {A019566(n)=A000422(n)-A007908(n)}, [1..22]) \\ Replacing code from Jan 13 2013, following a comment from Nov 02 2016. - M. F. Hasler, Nov 07 2020
Extensions
More terms from Robert G. Wilson v, Jan 11 2002
More terms from David Wasserman, Nov 09 2004
Edited by N. J. A. Sloane, Nov 22 2020
Comments