cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019583 a(n) = n*(n-1)^4/2.

Original entry on oeis.org

0, 0, 1, 24, 162, 640, 1875, 4536, 9604, 18432, 32805, 55000, 87846, 134784, 199927, 288120, 405000, 557056, 751689, 997272, 1303210, 1680000, 2139291, 2693944, 3358092, 4147200, 5078125, 6169176, 7440174, 8912512, 10609215, 12555000, 14776336, 17301504, 20160657
Offset: 0

Views

Author

Keywords

Comments

a(n) = n(n-1)^4/2 is half the number of colorings of 5 points on a line with n colors. - R. H. Hardin, Feb 23 2002

Crossrefs

Cf. A101362.

Programs

  • Magma
    [n*(n-1)^4/2: n in [0..30]]; // Vincenzo Librandi, Apr 20 2012
  • Mathematica
    CoefficientList[Series[x^2*(1+18*x+33*x^2+8*x^3)/(1-x)^6,{x,0,40}],x] (* Vincenzo Librandi, Apr 20 2012 *)
    a[n_] := n*(n - 1)^4/2; Array[a, 30, 0] (* Amiram Eldar, Feb 13 2023 *)

Formula

Sum_{j>=2} 1/a(j) = hypergeom([1, 1, 1, 1, 1], [ 2, 2, 2, 3], 1) = -2 + 2*zeta(2) - 2*zeta(3) + 2*zeta(4). - Stephen Crowley, Jun 28 2009
G.f.: x^2*(1 + 18*x + 33*x^2 + 8*x^3)/(1 - x)^6. - Colin Barker, Feb 23 2012
From Amiram Eldar, Feb 13 2023: (Start)
a(n) = A101362(n-1)/2.
Sum_{n>=2} (-1)^n/a(n) = 2 + Pi^2/6 + 7*Pi^4/360 - 4*log(2) - 3*zeta(3)/2. (End)