cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019586 Vertical para-Fibonacci sequence: takes value i on later (i.e., b_j, j >= 2) terms of i-th Fibonacci sequence defined by b_0 = i, b_1 = [ tau(i+1) ].

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 0, 5, 3, 2, 6, 1, 7, 4, 0, 8, 5, 3, 9, 2, 10, 6, 1, 11, 7, 4, 12, 0, 13, 8, 5, 14, 3, 15, 9, 2, 16, 10, 6, 17, 1, 18, 11, 7, 19, 4, 20, 12, 0, 21, 13, 8, 22, 5, 23, 14, 3, 24, 15, 9, 25, 2, 26, 16, 10, 27, 6, 28, 17, 1, 29, 18, 11, 30, 7, 31, 19, 4, 32, 20, 12
Offset: 1

Views

Author

Keywords

Comments

Gives number of row in Wythoff array that contains n. - Casey Mongoven, Sep 10 2005
For a method of generating this sequence that does not refer to the Wythoff array or Fibonacci numbers, see A003603. - Clark Kimberling, Oct 29 2009

Crossrefs

Equals A003603(n) - 1.
Cf. Wythoff array: A035513.

Programs

  • Maple
    A019586 := proc(n::posint)
        local r,c,W ;
        for r from 1 do
            for c from 1 do
                W := A035513(r,c) ;
                if W = n then
                    return r-1 ;
                elif W > n then
                    break ;
                end if;
            end do:
        end do:
    end proc:
    seq(A019586(n),n=1..100) ; # R. J. Mathar, Aug 13 2021
  • Mathematica
    row[1] = row[2] = {1}; row[n_] := row[n] = Module[{ro, pos, lp, ins}, ro = row[n - 1]; pos = Position[ro, Alternatives @@ Intersection[ro, row[n - 2]]] // Flatten; lp = Length[pos]; ins = Range[lp] + Max[ro]; Do[ro = Insert[ro, ins[[i]], pos[[i]] + i], {i, 1, lp}]; ro];
    Flatten[Array[row, 9] - 1] (* Jean-François Alcover, Jul 12 2016, after Clark Kimberling *)

Formula

Says which row of Wythoff array (starting row count at 0) contains n.
If delete first occurrence of 0, 1, 2, 3, ... the sequence is unchanged.

Extensions

Casey Mongoven reports that where the sequence reads 15,9,2,16,10,6,29,1,30,11,7,19,..., the 29 and 30 should be 17 and 18.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003