A019590 Fermat's Last Theorem: a(n) = 1 if x^n + y^n = z^n has a nontrivial solution in integers, otherwise a(n) = 0.
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
References
- A. D. Aczel, Fermat's Last Theorem, Four Walls Eight Windows NY 1996.
- A. C. Clarke, The Last Theorem, Gollancz SF 2004.
- B. Cipra, What's Happening in the Mathematical Sciences 1994 Vol. 2, "A Truly Remarkable Proof" pp. 3-8 AMS Providence RI.
- B. Cipra, What's Happening in the Mathematical Sciences 1995-6 Vol. 3, 'Fermat's Theorem-At Last' pp. 2-13 AMS Providence RI.
- J. Coates and S.-T. Yau (Eds), Elliptic Curves, Modular Forms and Fermat's last Theorem, International Press Boston MA 1998.
- G. Cornell, J. H. Silverman and G. Stevens (Eds), Modular Forms and Fermat's last Theorem, Springer NY 2000.
- K. J. Devlin, Mathematics: The New Golden Age, Chapter 10, Columbia Univ. Press NY 1999.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 731.
- H. M. Edwards, Fermat's Last Theorem, Springer, 1977.
- G. Giorello & C. Sinigaglia, "Fermat: De défis en conjectures", Les génies de la science No. 32 Aug-Oct 2007, pp. 82-100, Pour la Science, Paris.
- C. Goldstein, "Le Théorème de Fermat", La Recherche, Vol. Mar 25 1994, pp. 268-275, Paris.
- C. Goldstein, "Le Théorème de Fermat enfin démontré", Chapter IX pp. 111-129 in 'Histoire Des Nombres', La Recherche, Tallandier, Paris 2007.
- Y. Hellegouarch, "Fermat Vaincu", Quadrature No. 22 pp. 37-55 Editions du choix Argenteuil (France) 1995.
- Y. Hellegouarch, "Fermat enfin démontré", Pour la Science, No. 220, 1996 pp. 92-97 Paris.
- Y. Hellegouarch, Invitation aux mathématiques de Fermat-Wiles, Dunod Paris 2001.
- Y. Hellegouarch, "L'Enigme du Theoreme de Fermat" pp. 31-41 in 'Qu'est-ce que l'Univers?", Université de tous les savoirs, Vol. 4 (Edit. Y. Michaud), Odile Jacob Paris 2001.
- Y. Hellegouarch, Invitation to the Mathematics of Fermat-Wiles, Academic Press NY 2001.
- P. Hoffman, The Man Who Loved Only Numbers, pp. 183-200, Hyperion NY 1998
- W. Lindsay, Fermat's Last Theorem, A Perfect Proof, Lulu Press, Morrisville NC 2005.
- L. J. Mordell, Three lectures on Fermat's last theorem, Cambr. Univ. Press 1921 (Reprinted by The Scholarly Pub. Office, Univ. of Michigan Library 2005).
- C. J. Mozzochi, The Fermat Diary, AMS Providence RI 2000.
- C. J. Mozzochi, The Fermat Proof, New Bern NC 2004.
- V. K. Murty, Seminar on Fermat's Last Theorem, Amer. Math. Soc. Providence RI 1995.
- P. Odifreddi, The Mathematical Century, Chapter 2.14 "Number Theory: Wiles' Proof of Fermat's Last Theorem (1995)" p. 82 Princeton Univ. Press NJ 2004.
- I. Peterson, The Mathematical Tourist, pp. 234-238, W. H. Freeman/Owl Book NY 2001.
- I. Peterson, "A Marginal Note" in Islands of Truths, pp. 280-285, W. H. Freeman NY 1990.
- A. van der Poorten, Notes on Fermat's Last Theorem, Wiley NY 1996
- J. Propp, Who Proved Fermat's Last Theorem? Princeton Univ. Press NJ 2005.
- P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979.
- P. Ribenboim, Fermat's Last Theorem for Amateurs, Springer Verlag NY 1999.
- R. Schoof, "Wiles' proof of the Taniyama-Weil conjecture for semi-stable elliptic curves over Q", Chap. 14 in 'Ou En Sont Les Mathématiques ?' Soc. Math. de France (SMF), Vuibert, Paris 2002.
- S. Singh, Fermat's Enigma, Walker and Co. NY 1997.
- I. Stewart, From Here To Infinity, Chapter 3 "Marginal Interest" pp. 25-48 OUP Oxford 1996.
- I. Stewart and D. Tall, Algebraic Number Theory and Fermat's Last Theorem, A. K. Peters Natick MA 2001.
- G. R. Talbott, Fermat's Last Theorem, Lotus Press WI 1991.
- R. Van Vo, Fermat's Last Theorem, AuthorHouse, Bloomington IN 2002.
- J. Vigouroux et al., Une aventure mathématique, le théorème de Fermat, BT2 series No. 6, PEMF Mouans-Sartoux(France) 1998.
Links
- Amer. Math. Soc., Fermat's Last Theorem
- Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- A. J. Bailey, Fermat's Last Theorem
- N. Barker, Fermat's Last Theorem
- K. Belabas and C. Goldstein, Fermat et son Theoreme
- K. V. Binns, Fermat's Last Theorem
- N. Boston, The Proof Of Fermat's Last Theorem
- K. Buzzard, Review of "Modular Forms and Fermat's Last Theorem" edited by G. Cornel, J. H. Silverman and G. Stevens, Bull. Amer. Math. Soc. 36 (1999), 261-266.
- C. K. Caldwell, The Prime Glossary, Fermat's last theorem
- A. Camus College Team, La conjecture de Fermat
- C. C. Chang, BBC's Horizon Program: "Fermat's Last Theorem"
- C. S. Chinea, Sobre La Conjetura de Fermat(Text in Italian)
- K. Choi, A Note on Fermat's Last Theorem-Was it a Right Question?
- K. Choi, Timeline of FLT
- K. Conrad, Fermat's Last Theorem For Regular Primes
- P. Daley, Fermat's Last Theorem
- C. Daney, The Proof of Fermat's Last Theorem
- H. Darmon, A Proof of the Full Shimura-Taniyama-Weil Conjecture Is Announced
- H. Darmon, The Shimura-Taniyama conjecture (d'apres Wiles)
- K. M. Evans, In Defense of Mr. Fermat
- G. Faltings, The Proof of Fermat's Last Theorem by R.Taylor and A.Wiles
- Larry Freeman's Blog Spot, Fermat's Last Theorem
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
- C. Gorin, Fermat's Last Theorem
- F. Q. Gouvea, Wiles's Proof, 1993-1995: Review of "The Fermat Diary" by C. J. Mozzochi
- A. Granville, Review of BBC's Horizon Program:"Fermat's Last Theorem"
- D. Graves, Review of "Fermat's Last Theorem for Amateurs" by P.Ribenboim
- W. F. Hammond, Fermat's Last Theorem after 356 years
- W. F. Hammond, Wiles,Ribet,Shimura-Taniyama-Weil and Fermat's Last Theorem
- T. Hausberger, Autour du dernier Theoreme de Fermat
- S. Horsler, Home Page on FLT
- A. Jackson, Review of "Fermat's Enigma" by S.Singh
- M. Jaiclin, What Makes Fermat's Last Theorem So Hard, Anyway?
- D. Kaminski, The extraordinary story of Fermat's Last Theorem
- A. Krowne, PlanetMath.org, Fermat's last theorem
- S. Lang, Some History of the Shimura-Taniyama Conjecture
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- L. Lemaire, Le theoreme de Fermat-Wiles (pages 5-11/35)
- R. Lisker, Fermat's Last Theorem (Conference Report)
- A. Lopez-Ortiz, What We Know About Fermat's Last Theorem
- L. Lusk, A Brief History of Fermat's Last Theorem
- John Lynch (writer/producer) and Simon Singh (director), Fermat's Last Theorem. Horizon. BBC TV/WGBH Boston, Jan 15 1996.
- M. Marcionelli, La conjecture de Fermat
- Mathematical Database, Poster, Fermat's Last Theorem
- Mathforum, Fermat's Last Theorem
- J. S. Milne, Elliptic Curves
- New York Times, "Fermat's Enigma" by S. Singh; Chapter 1
- J. J. O'Connor and E. F. Robertson, Fermat's Last Theorem
- R. Osserman et al., Fermat's Last Theorem: A Supplement to the Video
- I. Peterson, Curving Beyond Fermat
- J. Propp, Bibliography of articles on FLT
- S. Rees, Fermat's Last Theorem
- D. Rideout, Pythagorean Triples, the Unit Circle and Fermat's Last Theorem
- K. Rubin, The Solving of Fermat's Last Theorem (Slides)
- K. Rubin and A. Silverberg, A Report on Wiles' Cambridge Lectures
- K. Rubin and A. Silverberg, A report on Wiles' Cambridge lectures, arXiv:math/9407220 [math.NT], 1994.
- K. Rubin and A. Silverberg, A Report On Wiles' Cambridge Lectures, Bull. Amer. Math. Soc. 31 (1994), 15-38.
- D. Rusin, The Mathematical Atlas, Higher degree equations; Fermat's equation [Broken link]
- D. Rusin, The Mathematical Atlas, Higher degree equations; Fermat's equation [Cached copy, but just of the top page, so none of the internal links will work]
- School of Mathematics and Statistics, University of St Andrews, Fermat's last theorem.
- P. Schorer, Is There a "Simple" Proof of Fermat's Last Theorem
- J. L. Selfridge, C. A. Nicol and H. S. Vandiver, Proof Of Fermat's Last Theorem For All Prime Exponents Less Than 4002
- D. Shay, Fermat's Last Theorem
- S. Singh, Fermat Corner
- S. Singh, Fermat's Last Theorem
- S. Somani, The Saga of Fermat's Last Theorem
- K. Spiliopoulos, The Final Milestones in the Proof of Fermat's Last Theorem
- S. Stedman, Fermat's Last Theorem
- W. A. Stein, Fermat's Last Theorem and Modularity of Elliptic Curves
- Ian Stewart, Fermat's Last Time-Trip, in Scientific American Nov. 1993 pp. 85.
- D. Surendran, Fermat's Last Theorem
- Think Quest, The final stages in proving Fermats Last Theorem
- C. Thornhill, Fermat's Last Theorem
- A. van der Poorten, "Notes on Fermat's Last Theorem": Table of Contents
- A. van der Poorten, Fermat's Last Theorem
- D. L. Vestal, Review of "Invitation to the Mathematics of Fermat-Wiles" by Y. Hellegouarch
- G. Villemin's Almanach of Numbers, Theoreme de Fermat-Wiles
- Wikipedia, Fermat's Last Theorem
- A. J. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. Math. 141 (1995), 443-551, doi:10.2307/2118559.
- T. Yee, The Fermat's Last Theorem(FLT)
- Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
- Index entries for characteristic functions
Crossrefs
Programs
-
PARI
{a(n) = (n==1) + (n==2)}; /* Michael Somos, Jul 05 2009 */
Formula
a(n) = (-1)^n*Sum_{k=0..floor(n/2)} (-1)^A010060(n-2k) mod (C(n, 2k), 2). - Paul Barry, Jan 03 2005
Euler transform of length 2 sequence [1, -1]. - Michael Somos, Jul 05 2009
a(n) is multiplicative with a(2) = 1, a(2^e) = 0 if e > 1, a(p^e) = 0^e if p > 2. - Michael Somos, Jul 05 2009
G.f.: x + x^2 = x * (1 - x^2) / (1 - x). - Michael Somos, Jul 05 2009
Dirichlet g.f.: 1 + 2^(-s). - Michael Somos, Jul 05 2009
a(n) = Sum_{d|n} mu(n/d) * gcd(d,2). - Ridouane Oudra, May 30 2025
Comments