A020479 Number of noninvertible 2 X 2 matrices over Z/nZ (determinant is a divisor of 0).
10, 33, 160, 145, 1008, 385, 2560, 2673, 7120, 1441, 16128, 2353, 26320, 27585, 40960, 5185, 81648, 7201, 113920, 97713, 155056, 12673, 258048, 90625, 299728, 216513, 421120, 25201, 671760, 30721, 655360, 552321, 866320, 532945, 1306368, 51985
Offset: 2
Keywords
Crossrefs
Cf. A000252.
Programs
-
Mathematica
f[p_, e_] := (p - 1)^2*(p + 1)*p^(4*e - 3); a[n_] := n^4 - Times @@ f @@@ FactorInteger[n]; Array[a, 36, 2] (* Amiram Eldar, Aug 03 2024 *)
-
PARI
a(n) = {my(f = factor(n), p = f[,1], e=f[,2]); n^4 - prod(k = 1, #p, (p[k] - 1)^2*(p[k] + 1)*p[k]^(4*e[k] - 3));} \\ Amiram Eldar, Aug 03 2024
Formula
a(n) seems to be divisible by n. - Ralf Stephan, Sep 01 2003 [This is true and can be easily proven from the formula below and from the multiplicative formula for A000252(n). - Amiram Eldar, Aug 03 2024]