cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020479 Number of noninvertible 2 X 2 matrices over Z/nZ (determinant is a divisor of 0).

Original entry on oeis.org

10, 33, 160, 145, 1008, 385, 2560, 2673, 7120, 1441, 16128, 2353, 26320, 27585, 40960, 5185, 81648, 7201, 113920, 97713, 155056, 12673, 258048, 90625, 299728, 216513, 421120, 25201, 671760, 30721, 655360, 552321, 866320, 532945, 1306368, 51985
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A000252.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^2*(p + 1)*p^(4*e - 3); a[n_] := n^4 - Times @@ f @@@ FactorInteger[n]; Array[a, 36, 2] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e=f[,2]); n^4 - prod(k = 1, #p, (p[k] - 1)^2*(p[k] + 1)*p[k]^(4*e[k] - 3));} \\ Amiram Eldar, Aug 03 2024

Formula

a(n) seems to be divisible by n. - Ralf Stephan, Sep 01 2003 [This is true and can be easily proven from the formula below and from the multiplicative formula for A000252(n). - Amiram Eldar, Aug 03 2024]
a(n) = n^4 - A000252(n). - T. D. Noe, Jan 16 2006