cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020579 Expansion of g.f. 1/((1-6*x)*(1-8*x)*(1-9*x)).

Original entry on oeis.org

1, 23, 355, 4595, 53851, 592403, 6240235, 63710915, 635468251, 6225852083, 60146237515, 574587484835, 5439634923451, 51116555484563, 477406092913195, 4435981769620355, 41041272503703451, 378327871809737843, 3476703760455563275, 31864966517183461475, 291385416197758352251
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-6*x)*(1-8*x)*(1-9*x)))); // Vincenzo Librandi, Jul 04 2013
    
  • Magma
    I:=[1,23,355]; [n le 3 select I[n] else 23*Self(n-1)-174*Self(n-2)+432*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 04 2013
  • Mathematica
    CoefficientList[Series[1 / ((1 - 6 x) (1 - 8 x) (1 - 9 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 04 2013 *)

Formula

a(n) = 6*6^n - 32*8^n + 27*9^n. - R. J. Mathar, Jun 30 2013
From Vincenzo Librandi, Jul 04 2013: (Start)
a(0)=1, a(1)=23, a(2)=355; for n>2, a(n) = 23*a(n-1) - 174*a(n-2) + 432*a(n-3).
a(n) = 17*a(n-1) - 72*a(n-2) + 6^n. (End)
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(6*x)*(6 - 32*exp(2*x) + 27*exp(3*x)).
a(n) = A016172(n+1) - A016170(n+1). (End)