cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020654 Lexicographically earliest infinite increasing sequence of nonnegative numbers containing no 5-term arithmetic progression.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 125, 126, 127
Offset: 1

Views

Author

Keywords

Comments

This is also the set of numbers with no "4" in their base-5 representation. In fact, for any prime p, the sequence consisting of numbers with no (p-1) in their base-p expansion is the same as the earliest sequence containing no p-term arithmetic progression. - Nathaniel Johnston, Jun 26-27 2011

Crossrefs

Cf. A023717.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 4)
            r += b * q
            b *= 5
        end
    r end; [a(n) for n in 0:66] |> println # Peter Luschny, Jan 03 2021
  • Maple
    seq(`if`(numboccur(4,convert(n,base,5))=0,n,NULL),n=0..127); # Nathaniel Johnston, Jun 27 2011
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 5 ], 4 ]==0)& ]
    Select[Range[0, 120], DigitCount[#, 5, 4] == 0 &] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    is(n)=while(n>4, if(n%5==4, return(0)); n\=5); 1 \\ Charles R Greathouse IV, Feb 12 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(201) if digits(n, 5)[1:].count(4)==0]) # Indranil Ghosh, May 23 2017
    
  • Python
    from gmpy2 import digits
    def A020654(n): return int(digits(n-1,4),5) # Chai Wah Wu, May 06 2025
    

Formula

Sum_{n>=2} 1/a(n) = 7.7794910022243020875287956248411192066951785182667316905881486574421016471305408306837031955619272391023... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Apr 14 2025

Extensions

Added "infinite" to definition. - N. J. A. Sloane, Sep 28 2019