cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000049 Number of positive integers <= 2^n of the form 3*x^2 + 4*y^2.

Original entry on oeis.org

0, 0, 2, 3, 5, 9, 16, 29, 53, 98, 181, 341, 640, 1218, 2321, 4449, 8546, 16482, 31845, 61707, 119760, 232865, 453511, 884493, 1727125, 3376376, 6607207, 12941838, 25371086, 49776945, 97730393, 192009517, 377473965, 742511438, 1461351029, 2877568839, 5668961811
Offset: 0

Views

Author

Keywords

Examples

			There are 5 integers <= 2^4 of the form 3*x^2 + 4*y^2. The five (x,y) pairs are (1,0), (0,1), (1,1), (2,0), (0,2) and give 3, 4, 7, 12, 16 solutions, respectively. So a(4) = 5. - _Seth A. Troisi_, Apr 22 2022
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A020677.

A317643 Expansion of theta_3(q^3)*theta_3(q^4), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation 3*x^2 + 4*y^2 = n.

Examples

			G.f. = 1 + 2*q^3 + 2*q^4 + 4*q^7 + 2*q^12 + 6*q^16 + 4*q^19 + 2*q^27 + 4*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q^3] EllipticTheta[3, 0, q^4], {q, 0, nmax}], q]
    nmax = 100; CoefficientList[Series[QPochhammer[-q^3, -q^3] QPochhammer[-q^4, -q^4]/(QPochhammer[q^3, -q^3] QPochhammer[q^4, -q^4]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(6*k-3))^2*(1 - x^(6*k))*(1 + x^(8*k-4))^2*(1 - x^(8*k)).
Showing 1-2 of 2 results.