A020720 Pisot sequences E(7,9), P(7,9).
7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081, 922111, 1221537
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- S. B. Ekhad, N. J. A. Sloane, and D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT], 2016.
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
Programs
-
Mathematica
LinearRecurrence[{0, 1, 1}, {7, 9, 12}, 50] (* Jean-François Alcover, Aug 31 2018 *) CoefficientList[Series[(7 + 9 x + 5 x^2)/(1 - x^2 - x^3), {x, 0, 50}], x] (* Stefano Spezia, Aug 31 2018 *)
Formula
a(n) = a(n-2) + a(n-3) for n>=3. (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016
G.f.: (7+9*x+5*x^2) / (1-x^2-x^3). - Colin Barker, Jun 05 2016