A020740 Max_{k=0..n} d(C(n,k)) - d(C(n,[ n/2 ])), where d() = number of divisors.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 16, 32, 0, 0, 0, 64, 48, 0, 0, 96, 0, 0, 0, 192, 256, 0, 256, 384, 0, 0, 0, 0, 0, 832, 768, 512, 0, 0, 0, 0, 384, 576, 1536, 3072, 2048, 8448, 7680, 5632, 0, 0, 0, 14336, 3584, 0, 0, 3072
Offset: 1
Keywords
Examples
n=20, d(C[ 20,10 ])= 48 and the d(C[ 20,k ]) values are 1,6,8,16,24,40,64,80. The maximum is 80, so the difference is 80-48 = 32.
Programs
-
Maple
020740 := proc(n) local a,k; a := -1 ; for k from 0 to n do a := max(a, numtheory[tau](binomial(n,k))) ; end do: a-numtheory[tau](binomial(n,floor(n/2))) ; end proc: seq(A020740(n),n=1..80); # R. J. Mathar, Nov 19 2024
-
Mathematica
Table[Max[Table[DivisorSigma[0,Binomial[n,k]],{k,0,n}]] - DivisorSigma[ 0,Binomial[n,Floor[n/2]]],{n,70}] (* Harvey P. Dale, Jul 18 2013 *)