cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A019494 Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,10).

Original entry on oeis.org

4, 10, 24, 57, 135, 319, 753, 1777, 4193, 9893, 23341, 55069, 129925, 306533, 723205, 1706261, 4025589, 9497589, 22407701, 52866581, 124728341, 294272085, 694277333, 1638011349, 3864566869, 9117688405, 21511399509, 50751932757, 119739242325, 282501283669
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(4,10) sequence, which is A020748. - R. J. Mathar, Feb 13 2016

Programs

  • Mathematica
    T[a_, b_, n_] := Block[{s = {a, b}, k}, Do[k = Ceiling[b Last@ s/a]; While[k/s[[i - 1]] >= s[[i - 1]]/s[[i - 2]], k--]; AppendTo[s, k], {i, 3, n}]; s]; T[4, 10, 20] (* or *)
    a = {4, 10}; Do[AppendTo[a, Ceiling[a[[n - 1]]^2/a[[n - 2]]] - 1], {n, 3, 27}]; a (* Michael De Vlieger, Feb 15 2016 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(4, 10, 30) \\ Colin Barker, Feb 16 2016

Formula

Empirical G.f.: (4-2*x+2*x^2-3*x^3)/(1-3*x+2*x^2-2*x^3+2*x^4). - Colin Barker, Feb 04 2012
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for n>0. - Bruno Berselli, Feb 15 2016
Showing 1-1 of 1 results.